大学课程设计论文变频器恒压供水系统(多泵).doc

上传人:仙人指路1688 文档编号:3941351 上传时间:2023-03-28 格式:DOC 页数:23 大小:230KB
返回 下载 相关 举报
大学课程设计论文变频器恒压供水系统(多泵).doc_第1页
第1页 / 共23页
大学课程设计论文变频器恒压供水系统(多泵).doc_第2页
第2页 / 共23页
大学课程设计论文变频器恒压供水系统(多泵).doc_第3页
第3页 / 共23页
大学课程设计论文变频器恒压供水系统(多泵).doc_第4页
第4页 / 共23页
大学课程设计论文变频器恒压供水系统(多泵).doc_第5页
第5页 / 共23页
点击查看更多>>
资源描述

《大学课程设计论文变频器恒压供水系统(多泵).doc》由会员分享,可在线阅读,更多相关《大学课程设计论文变频器恒压供水系统(多泵).doc(23页珍藏版)》请在三一办公上搜索。

1、目 录1 变频器恒压供水系统简介11.1变频恒压供水系统理论分析11.1.1变频恒压供水系统节能原理11.1.2 变频恒压控制理论模型21.2恒压供水控制系统构成31.3 变频器恒压供水产生的背景和意义42 变频恒压供水系统设计52.1 设计任务及要求52.2 系统主电路设计52.3 系统工作过程63 器件的选型及介绍83.1 变频器简介83.1.1 变频器的基本结构与分类83.1.2 变频器的控制方式83.2 变频器选型103.2.1 变频器的控制方式103.2.2 变频器容量的选择103.2.3 变频器主电路外围设备选择113.3 可编程控制器(PLC)133.3.2 PLC的工作原理14

2、3.3.3 PLC及压力传感器的选择154 PLC编程及变频器参数设置164.1 PLC的I/O接线图164.2 PLC程序164.3 变频器参数的设置204.3.1 参数复位204.3.2 电机参数设置20总结21参考文献221 变频器恒压供水系统简介1.1变频恒压供水系统理论分析1.1.1变频恒压供水系统节能原理 供水系统的基本特性和工作点扬程特性是以供水系统管路中的阀门开度不变为前提,表明水泵在某一转速下扬程H与流量Q之间的关系曲线f(Q),如图1-1所示。 图1-1供水系统的基本特征 由图可以看出,流量Q越大,扬程H越小。由于在阀门开度和水泵转速都不变的情况下,流量的大小主要取决于用户

3、的用水情况,因此,扬程特性所反映的是扬程H与用水流量Q(u)间的关系。而管阻特性是以水泵的转速不变为前提,表明阀门在某一开度下,扬程H与流量Q之间的关系H J (Qu )。管阻特性反映了水泵的能量用来克服泵系统的水位及压力差、液体在管道中流动阻力的变化规律。由图可知,在同一阀门开度下,扬程H越大,流量Q也越大。由于阀门开度的改变,实际上是改变了在某一扬程下,供水系统向用户的供水能力。因此,管阻特性所反映的是扬程与供水流量Qc之间的关系H f (Qc )。扬程特性曲线和管阻特性曲线的交点,称为供水系统的工作点,如图中A点。在这一点,用户的用水流量Qu和供水系统的供水流量Qc处于平衡状态,供水系统

4、既满足了扬程特性,也符合了管阻特性,系统稳定运行。图1-1供水系统的基本特征。 变频恒压供水系统的供水部分主要由水泵、电动机、管道和阀门等构成。通常由异步电动机驱动水泵旋转来供水,并且把电机和水泵做成一体,通过变频器调节异步电机的转速,从而改变水泵的出水流量而实现恒压供水的。因此,供水系统变频的实质是异步电动机的变频调速。异步电动机的变频调速是通过改变定子供电频率来改变同步转速而实现调速的。1.1.2 变频恒压控制理论模型 变频恒压控制系统以供水出口管网水压为控制目标,在控制上实现出口总管网的实际供水压力跟随设定的供水压力。设定的供水压力可以是一个常数,也可以是一个时间分段函数,在每一个时段内

5、是一个常数。所以,在某个特定时段内,恒压控制的目标就是使出口总管网的实际供水压力维持在设定的供水压力上 从图1-2中可以看出,在系统运行过程中,如果实际供水压力低于设定压力,控制系统将得到正的压力差,这个差值经过计算和转换,计算出变频器输出频率的增加值,该值就是为了减小实际供水压力与设定压力的差值,将这个增量和变频器当前的输出值相加,得出的值即为变频器当前应该输出的频率。该频率使水泵机组转速增大,从而使实际供水压力提高,在运行过程中该过程将被重复,直到实际供水压力和设定压力相等为止。如果运行过程中实际供水压力高于设定压力,情况刚好相反,变频器的输出频率将会降低,水泵的转速减小,实际供水压力因此

6、而减小。同样,最后调节的结果是实际供水压力和设定压力相等。 图1-2变频恒压控制原理图1.2恒压供水控制系统构成变频恒压供水系统的供水部分主要由水泵、电动机、管道和阀门等构成。通常由异步电动机驱动水泵旋转来供水,并且把电机和水泵连成一体,通过变频器调节异步电机的转速,从而改变水泵的出水流量而实现恒压供水的。因此,供水系统变频的实质是异步电动机的变频调速。异步电动机的变频调速是通过改变定子供电频率来改变同步转速而实现调速的。变频器水泵用户管网压力压力变送器给定值+- 图1-3恒压供水系统方框图水压由压力传感器的信号4-20mA送入变频器内部的PID模块,与用户设定的压力值进行比较,并通过变频器内

7、置PID运算将结果转换为频率调节信号,以调整水泵电机的电源频率,从而实现控制水泵转速。由于变频器内部自带的PID调节器采用了优化算法,所以使水压的调节十分平滑,稳定。同时,为了保证水压反馈信号值的准确、不失值,可对该信号设置滤波时间常数,同时还可对反馈信号进行换算,使系统的调试更为简单、方便。西门子系列PLC编程采用STEP7软件,它是西门子PLC的视窗软件支持工具,提供完整的编程环境,可进行离线编程和在线连接和调试,并能实现梯形图与语句表的相互转换。系统程序包括主程序和起动子程序,主程序包括参与调节程序和电机切换程序;电机切换程序又包括加电机程序和减电机程序。起动子程序实际上是清零子程序。在

8、主程序中,设置两个变频器频率上下限到达滤波时间继电器,用于稳定系统。1.3 变频器恒压供水产生的背景和意义 泵站担负着工农业和生活用水的重要任务,运行中需要大量消耗能量,提高泵站效率;降低能耗,对国民经济有重大意义。我过泵站的特点是数量大、范围广、类型多、发展速度快,在工程规模上也有一定水平,但由于设计中忽视动能经济观点以及机电产品类型和质量上存在的一些问题等原因,至使在技术水平、工程标准以及经济效益指标等方面与国外先进水平相比,还有一定的差距。目前,大量的动能消耗在水泵、风机负载上,城乡居民用水设备所消耗的电量在这类负载中占了相当大的比例。因此,研究提水系统的能量模型,找出能够节能的控制策略

9、方法是目前较为重要的一件事。以变频器为核心结合PLC组成的控制系统具有高可靠性、强抗干扰能力、组合灵活、编程简单、维修方便和低成本等诸多特点,变频恒压供水系统集变频技术、电气技术、防雷避雷技术、现代控制、远程监控技术与一体。采用该系统进行供水可以提高供水系统的稳定性和可靠性,方便的实现供水系统的集中管理与监控;同时系统具有良好节能性,这在能量日益紧缺的今天尤为重要,所以研究设计该系统,对于提高企业效率以及人民的生活水平、降低能耗等方面具有重要的现实意义。2 变频恒压供水系统设计2.1 设计任务及要求本系统是以一个供水系统作为被控对象,PLC与变频器协调控制电机的转速与启动和停止。系统控制要求:

10、(1) 工艺参数: 供水系统由3台水泵组成:母管压力H0.8时,一台定速,一台变速,一台备用。母管压力H0.64时,一台定速或变速,二台备用。母管压力H0.52时,一台变速,二台备用。(2) 电动机参数:型号:JD-L-39-4 功率:75KW 额定频率:50Hz 额定电压:380VAC; 额定转速:1470 r/min 额定电流:126.6 A(3) 水泵电机的起动/停止、正转、调速控制。(4) 变频器采用远方控制方式。(5) 通过母管压力变送器测得实际压力大小,同时和压力给定组成闭环控制。(6) 变频器的运行状态指示(如运行、停止、过流、低压等)。(7) 变频器的报警处理。2.2 系统主电

11、路设计图2.1 系统主电路图由恒压供水主电路图可见,接触器1KM2、2KM2、和3KM2用于变频器输出,分别接到水泵M1、M2和M3,而接触器1KM3、2KM3和3KM3将工频电源接到3台水泵。变频器可以对任何一台水泵启动和恒压供水控制。空气开关(QL)是当电动机过载时自动将电动机从电网中断开热继电器(FR)是利用电流的热效应原理工作的保护电路,它在电路中用作电动机的过载保护。2.3 系统工作过程1、减泵过程当用水量减少、水压上升、变频器输出频率低于下限值时,但管网压力仍偏高时,则各泵将依次退出运行,依次退出运行的方式有两种。(1)先开先停方式。PLC接收到下限频率到达信号,延时一定时间后,接

12、触器1KM2失电复位,水泵M1脱离工频电源停止运行。变频器输出频率仍然低于下限值,重复上述过程,水泵M2脱离工频电源停止运行,变频器驱动水泵M3恒压供水,水压稳定在设定值上。这种方式称为循环方式,通常用于各台水泵的容量都相等的供水系统中。其优点是可以自动的使各泵运行的时间比较均衡;缺点是工频运行状态直接停机时,可能由于停机太快而使管网压力发生较大波动。(2)先开后停方式。首先使正在变频运行的M3减速停机,然后使变频器的输出频率升至50Hz,将M2切换为变频工作,依此类推这种方式通常用于各台水泵的容量不相等的供水系统中,其优点是水泵的停机比较缓慢,管网压力比较稳定;缺点是不能自动地循环变换。2、

13、加泵过程首先由M1在变频控制的情况下工作。当用水量增大、水压下降,变频器输出频率上升到50Hz时水压仍然不足,经过短暂的延时,将M1切换为工频工作,同时变频器的输出频率迅速降低为0,然后使M2投入变频运行。当M2也达到额定频率而水压仍不足时,重复开始运行时的过程,水泵M2脱离变频器驱动,由工频供电全速运行,变频器驱动水泵M3变频运行,使水压恒定在设定值上。3 器件的选型及介绍3.1 变频器简介3.1.1 变频器的基本结构与分类1、变频器的基本结构变频器是把工频电源(50Hz或60Hz)变换成各种频率的交流电源,以实现电机的变速运行的设备。变频器包括控制电路、整流电路、中间直流电路及逆变电路组成

14、。其中控制电路完成对主电路的控制,整流电路将交流电变换成直流电,直流中间电路对整流电路的输出进行平滑滤波,逆变电路将直流电再逆变成交流电。对于如矢量控制变频器这种需要大量运算的变频器来说,有时还需要一个进行转矩计算的CPU以及一些相应的电路。 2、变频器的分类 变频器的分类方法有多种,按照主电路工作方式分类,可以分为电压型变频器和电流型变频器;按照开关方式分类,可以分为PAM控制变频器、PWM控制变频器和高载频PWM控制变频器;按照工作原理分类,可以分为V/f控制变频器、转差频率控制变频器和矢量控制变频器等;按照用途分类,可以分为通用变频器、高性能专用变频器、高频变频器、单相变频器和三相变频器

15、等。 3.1.2 变频器的控制方式低压通用变频器输出电压在38O65OV,输出功率在O75400kW,工作频率在O400Hz,它的主电路都采用交一直一交电路。其控制方式经历以下四代。1、第一代以U/fConst,正弦脉宽调制(SPWM)控制方式。其特点是:控制电路结构简单、成本较低,但系统性能不高、控制曲线会随负载的变化而变化,转矩响应慢、电机转矩利用率不高,低速时因定子电阻和逆变器死区效应的存在而性能下降,稳定性变差等。2、第二代以电压空间矢量(磁通轨迹法),又称SVPWM控制方式。它是以三相波形整体生成效果为前提,以逼近电机气隙的理想圆形旋转磁场轨迹为目的,一次生成三相调制波形。以内切多边

16、形逼近圆的方式而进行控制的。经实践使用后又有所改进:引人频率补偿,能消除速度控制的误差;通过反馈估算磁链幅值,消除低速时定子电阻的影响;将输出电压、电流成闭环,以提高动态的精度和稳定度。但控制电路环节较多,且没有引人转矩的调节,所以系统性能没有得到根本改善。3、第三代以矢量控制(磁场定向法)又称VC控制。其实质是将交流电动机等效直流电动机,分别对速度、磁场两个分量进行独立控制。通过控制转子磁链,以转子磁通定向,然后分解定子电流而获得转矩和磁场两个分量,经坐标变换,实现正交或解耦控制。然而转子磁链难以准确观测,以及矢量变换的复杂性,实际效果不如理想的好。4、第四代以直接转矩控制,又称DTC控制。

17、其实质不是间接的控制电流、磁链等量,而是把转矩直接作为被控制量来实现的。具体方法是:(1)控制定子磁链引入定子磁链观测器,实现无速度传感器方式;(2)自动识别(ID)依靠精确的电机数学模型,对电机参数自动识别;(3)算出实际值对定子阻抗、互感、磁饱和因素、惯量等算出实际的转矩、定子磁链、转子速度进行实时控制;(4)实现BandBand控制一一按磁链和转矩的Band一Band控制产生PWM信号,对逆变器开关状态进行控制;(5)具有快速的转矩响应(2ms,很高的速度精度(2%,无PG反馈),高转矩精度(土3%);(6)具有较高的起动转矩及高转矩精度,尤其在低速时(包括0速度时),可输出15O%20

18、0%转矩。3.2 变频器选型3.2.1 变频器的控制方式控制方式是决定变频器使用性能的关键所在。目前市场上低压通用变频器品牌很多,包括欧、美、日及国产的共约5O多种。选用变频器时不要认为档次越高越好,其实只要按负载的特性,满足使用要求就可,以便做到量才使用、经济实惠。下表中参数供选用时参考。表3.1控制方式的比较控制方式U/f=C控制电压空间矢量控制矢量控制直接转矩控制反馈装置不带PG带PG或PID调节器不要不带PG带PG或编码器速比I150%200%静态速度精度/%(0.20.3)(0.20.3)0.20.20.020.2适用场合一般风机、泵类等较高精度调速,控制一般工业上的调速或控制所有调

19、速或控制伺服拖动、高精传动、转矩控制负荷起动、起重负载转矩控制系统,恒转矩波动大负载故选择U/f=C控制3.2.2 变频器容量的选择首先要根据机械对转速(最高、最低)和转矩(起动、连续及过载)的要求,确定机械要求的最大输入功率(即电机的额定功率最小值),其大小由下式计算: P=nT/9550(kW) 式中:P机械要求的输入功率(kW); n机械转速(r/min); T机械的最大转矩(Nm)。然后,选择电机的极数和额定功率。电机的极数决定了同步转速,要求电机的同步转速尽可能地覆盖整个调速范围。为了充分利用设备潜能,避免浪费,可允许电机短时超出同步转速,但必须小于电机允许的最大转速。转矩取设备在起

20、动、连续运行、过载或最高转速等状态下的最大转矩。最后,根据变频器输出功率和额定电流稍大于电机的功率和额定电流的原则来确定变频器的参数与型号。 根据计算所得的所需参数可以选取西门MicroMaster430(风机水泵专用)变频器,具体的可以选择mm430110k型号的变频器,它配接电机的容量是110kw,额定电流为205A满足使用需求,可以选择。3.2.3 变频器主电路外围设备选择1、断路器当变频器需要检修时,或者因某种原因而长时间不用时,将QF切断,使变频器与电源隔离。当变频器输入侧发生短路等故障时,进行保护。选择原则(1)变频器在刚接电源的瞬间,对电容器的充电电流可达额定电流的(2-3)倍;

21、(2)变频器的进线电流是脉冲电流,其峰值常可能超过额定电流;(3)变频器允许的过载能力为150%,1min。为了避免误动作,断路器的额定电流应选: (3.4)其中为变频器的额定电流。故选择断路器额定电流选择210A根据上述数据可以选择断路器DW15400断路器额定电压为380V,额定电流为300满足要求可以选择。2、接触器(1)主要作用:可通过按钮开关方便地控制变频器的通电与断电;变频器发生故障时,可自动切断电源。(2)选择原则:由于接触器自身并无保护功能,不存在误动作的问题,故选择原则是主触点的额定电流,应该大于126.6A,可以选择主触点额定电流为130A的接触器。根据上述数据施奈德的LC

22、1D150,满足参数要求,可以选择3、主电路的线径(1)电源和变频器之间的导线一般说来,和同容量普通电动机的电线选择方法相同。考虑到其输入侧的功率因数往往较低,应本着宜大不宜小的原则来决定线径。(2)变频器和电机之间的导线因为频率下降时,电压也要下降,在电流相等的情况下,线路电压降在输出电压中的比例将上升,而电动机得到电压的比例则下降。这有可能导致电动机带不动负载并发热。所以,在决定变频器和电动机之间导线的线径时,最关键的因素便是线路电压降的影响。一般要求: (3.5)的计算公式是: (3.6)式中:额定相电压,V ; 电动机额定电流,A ; 单位长度(每米)导线的电阻,m/m ; 导线的长度

23、,m 。由上两式可直接求出的取值范围。根据Ro值确定导线面积。由公式(3.5)得:11.4)V由公式(3.6)得:0.69 m/m 1.04 m/m 根据表3.1判断所需的导线截面积,为了满足控制系统的要求,应该选择截面积为16的导线。表3.2 常用电动机引出线的单位长度电阻值。标称截面/mm21.01.52.54.06.010.016.025.035.0/(m/m)17.811.96.924.402.921.731.100.690.494、制动电阻准确计算制动电阻值十分麻烦,在实际工作中基本不用。许多变频器的使用说明书上给了一些计算方法,也有的直接提供了供用户选用的制动电阻的规格。但按说明书

24、上选择电阻时须注意下面问题,变频器生产厂家为了减少制动电阻档次,常常对若干种不同容量的电动机提供相同阻值和容量的制动电阻。选用时,应注意根据生产机械的具体情况进行调整。对同一挡中电动机容量较小者,制动转矩与额定转矩的比值偏大。为了减小能量的消耗,应根据制动过程的缓急程度以及飞轮力矩的大小,考虑能否选择阻值较大的制动电阻。对同一挡中电动机容量较大者,制动转矩与额定转矩的比值偏小。在一些飞轮力矩较大,又要求快速制动的场合,或者如起重机械那样,需要释放位能的场合,上述制动电阻有可能满足不了要求,靠考虑选择阻值较小的一挡制动电阻。3.3 可编程控制器(PLC)3.3.1 PLC的定义及特点 在PLC的

25、发展过程中,美国电气制造商协会(NEMA)经过4年的调查,于1980年把这种新型的控制器正式命名为可编程序控制器(Programmable Controller),英文缩写为PC,并作如下定义:“可编程序控制器是一种数字式电子装置。它使用可编程序的存储器来存储指令,并实现逻辑运算、顺序控制、计数、计时和算术运算功能,用来对各种机械或生产过程进行控制。PLC的特点如下:1、高可靠性(1)所有的I/O接口电路均采用光电隔离,使工业现场的外电路与PLC内部电路之间电气上隔离。(2)各输入端均采用R-C滤波器,其滤波时间常数一般为1020ms.(3)各模块均采用屏蔽措施,以防止辐射干扰。(4)采用性能

26、优良的开关电源。(5)对采用的器件进行严格的筛选。(6)良好的自诊断功能,一旦电源或其他软,硬件发生异常情况,CPU立即采用有效措施,以防止故障扩大。(7)大型PLC还可以采用由双CPU构成冗余系统或有三CPU构成表决系统,使可靠性更进一步提高。2、丰富的I/O接口模块 PLC针对不同的工业现场信号,如: 交流或直流; 开关量或模拟量; 电压或电流; 脉冲或电位; 强电或弱电等。有相应的I/O模块与工业现场的器件或设备,如: 按钮 行程开关 接近开关 传感器及变送器 电磁线圈 控制阀直接连接。另外为了提高操作性能,它还有多种人-机对话的接口模块; 为了组成工业局部网络,它还有多种通讯联网的接口

27、模块,等等。3、采用模块化结构 为了适应各种工业控制需要,除了单元式的小型PLC以外,绝大多数PLC均采用模块化结构。PLC的各个部件,包括CPU,电源,I/O等均采用模块化设计,由机架及电缆将各模块连接起来,系统的规模和功能可根据用户的需要自行组合。4、编程简单易学 PLC的编程大多采用类似于继电器控制线路的梯形图形式,对使用者来说,不需要具备计算机的专门知识,因此很容易被一般工程技术人员所理解和掌握。5、安装简单,维修方便PLC不需要专门的机房,可以在各种工业环境下直接运行。使用时只需将现场的各种设备与PLC相应的I/O端相连接,即可投入运行。各种模块上均有运行和故障指示装置,便于用户了解

28、运行情况和查找故障。由于采用模块化结构,因此一旦某模块发生故障,用户可以通过更换模块的方法,使系统迅速恢复运行。3.3.2 PLC的工作原理PLC采用循环扫描的工作方式,在PLC中用户程序按先后顺序存放,CPU从第一条指令开始执行程序,直到遇到结束符后又返回第一条,如此周而复始不断循环。PLC的扫描过程分为内部处理、通信操作、程序输入处理、程序执行、程序输出几个阶段。全过程扫描一次所需的时间称为扫描周期。当PLC处于停状态时,只进行内部处理和通信操作服务等内容。在PLC处于运行状态时,从内部处理、通信操作、程序输入、程序执行、程序输出,一直循环扫描工作。3.3.3 PLC及压力传感器的选择 水

29、泵M1、M2、M3可变频运行,也可工频运行,需要6个输出点,根据系统设计要求需要五个输入点,则选择西门子的S7-200系列PLC。 压力传感器采用CY-YZ-1001型绝对传感器。该传感器采用硅压阻效应原理实现压力测量的力-电转换。传感器由敏感芯体和信号调理电路组成,当压力作用于传感器时,敏感芯体内硅片上的惠斯登电桥的输出电压发生变化,信号调理电路将输出的电压信号作放大处理,同时进行温度补偿、非线性补偿,使传感器的电性能满足技术指标的要求。传感器的量程为02.5MPa,工作温度为560,输出电压为05V,作为本系统的反馈信号供给PLC。4 PLC编程及变频器参数设置4.1 PLC的I/O接线图

30、K1K2K3K4K5K6220VACSB1SB2SB3SB4SD1LQ0.0Q0.1Q0.2Q0. 3Q0.4Q0.5NL1S7-200 PLC1MI0.0I0.1I0.2I0.3I0.4ML+图4.1 PLC的I/0接线图 输出端接中间继电器控制电机的工频与变频工作状态的转换,输入点I0.0控制系统电机的停止工作,I0.1控制系统电机工作及变频器工作的开始。I0.2点用于在一号泵有故障时手动启用三号泵代替一号泵的工作。I0.4为当变频器输出频率达到上限值时手动闭合,使电动机切换为工频工作。4.2 PLC程序启动变频器工作PLC接收压力变送器反馈的值,与设定值进行以系列计算之后输出一个值控制变

31、频器的输出频率,同时根据输出AC0的值判断电动机工作的台数与状态。其中压力变送器反馈值为05,内部数据为032767,对应进行转换之后通过下面的程序进行判断,以控制电动机的运行。判断反馈值为H0.8,则使一号水泵定速工作,同时使二号水泵变速工作。判断反馈值为0.52H0.64,则一号变频器定速或变速,当变频器输出频率达到上限值时则手动输入有效水泵变为定速运行,否则变速运行。判断反馈值为H0.52时,则一号水泵变速运行。停止按钮按下,所有水泵停止供水此段程序的功能为在一号水泵有故障时,通过手动切换使三号水泵代替一号水泵的工作。达到稳定供水。4.3 变频器参数的设置4.3.1 参数复位1、P000

32、33(选择级别为专家级)2、设定P0010303、设定P09701(设定P09701后变频器将自动进入参数恢复程序,大约要1020秒钟后才能将所有参数恢复为出厂缺省值,恢复的过程中变频器显示busy(忙)字样并闪烁。)4、显示P0970则复位操作完成4.3.2 电机参数设置P0010=1 (快速调试)P0100=0(功率单位为KW;f的缺省值为50Hz)P0304=380(电动机的额定电压)P0305=126.6(电动机的额定电)P0307=75(电动机的额定功率)P0310=50(电动机的额定频率)P0311=1470(电动机的额定转速)P0700=2(变频器命令源选择为模入端子/数字输入)

33、P1000=2(模拟设定值)P1080=5(电动机最小频率)P1082=50(电动机最大频率)P1120=10(电动机从静止停车加速到最大电动机频率所需时间)P1121=10(电动机从最大频率减速到静止停车所需的时间)P3900=1(结束快速调试)总结本论文研究的是变频恒压供水系统,此系统以变频器与PLC为核心进行设计。PLC控制变频器进行PID调节,同时变频器输出频率值控制水泵的转速。按实际情况设定压力给定值,根据压力变送器的反馈信号与设定值的压差调整水泵的工作情况,实现恒压供水。该系统可靠性高、效率高、节能效果好以及动态响应速度快,更好的实现恒压供水。经过本次课设,我复习了变频器与PLC的

34、相关知识,将所学的知识运用到了实际的设计中,这令我更直观地了解变频器的用途,也提高了我们动手动脑的能力。在遇到不会的问题的时候通过小组同学的相互讨论和老师的帮助也使之迎刃而解。感谢老师与同学们的帮助,使我通过做本次课设能有所提高。参考文献1 李良仁.变频调速技术与应用.北京:电子工业出版社,2004.12:85-922 康梅,朱莉.变频器使用指南.北京:化学工业出版社,2008.10:174-1793 李白先,黄哲.变频器使用技术与维修精要.北京:人民邮电出版社,2009.5:157-1614 魏连荣.变频器应用技术及实例解析.北京:化学工业出版社,2008.4:73-1335 吴中俊,黄永红.可编程序控制器原理及应用.第二版.北京:机械工业出版社, 2004.46 廖常初.PLC编程及应用.北京:机械工业出版社,20037 韩安荣.通用变频器及其应用.北京:机械工业出版社,2000

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 办公文档 > 其他范文


备案号:宁ICP备20000045号-2

经营许可证:宁B2-20210002

宁公网安备 64010402000987号