数字与应用数学毕业论文.doc

上传人:laozhun 文档编号:3944145 上传时间:2023-03-28 格式:DOC 页数:40 大小:1.37MB
返回 下载 相关 举报
数字与应用数学毕业论文.doc_第1页
第1页 / 共40页
数字与应用数学毕业论文.doc_第2页
第2页 / 共40页
数字与应用数学毕业论文.doc_第3页
第3页 / 共40页
数字与应用数学毕业论文.doc_第4页
第4页 / 共40页
数字与应用数学毕业论文.doc_第5页
第5页 / 共40页
点击查看更多>>
资源描述

《数字与应用数学毕业论文.doc》由会员分享,可在线阅读,更多相关《数字与应用数学毕业论文.doc(40页珍藏版)》请在三一办公上搜索。

1、毕 业 论 文 题目: 行列式的解法技巧及应用 系 别:数 理 系 专 业:数 学 与 应 用 数 学 姓 名:李 银 学 号:1 7 1 4 0 8 133 指导教师:李德英 河南城建学院年 月 日目 录摘要 .4Abstract.4引言.51 行列式的定义和性质.51.1 行列式的定义.51.2 行列式的性质.62 求解行列式的技巧.82.1 定义法.82.2 化三角形法.92.3 析因法.102.4 连加法.122.5 按行按列展开(降阶法).132.6 递推法.142.7 数学归纳法.152.8 加边法(升阶法).162.9 拆项法.182.10 拉普拉斯法.202.11 利用范德蒙行

2、列式法.213 行列式的应用.223.1 行列式在线性方程组中的应用.233.2 行列式在初等代数中的应用.243.2.1 用行列式分解因式.243.2.2 用行列式证明不等式和恒等式.253.3 行列式在解析几何中的几个应用.263.3.1 用行列式表示公式.273.3.2 行列式在平面几何中的一些应用.293.3.3行列式在三维空间中的应用.314 参考文献.395 致谢.40摘要 :行列式又是高等代数课程里基本而重要的内容,在数学中有着广泛的应用,因此懂得如何计算行列式显得尤为重要。本文将行列式的计算方法进行归纳总结,共论述了13种方法,并通过一些典型的例题介绍计算行列式的一些技巧。同时

3、,本文从以下三个方面对行列式的应用进行了论述: 探讨了行列式与线性方程组的关系以及在解线性方程组中的应用; 举例说明了行列式在初等代数中的应用, 如在因式分解中应用, 证明不等式以及恒等式; 最后综述了行列式在解析几何中的若干应用. 关键词:行列式;计算方法;范德蒙行列式;解析矩阵; 线性方程组;秩;因式分解; 平面组;点组Abstract: Determinant of higher algebra is that basic and important curriculum content . It ,meanwhile, has been widely used in mathemati

4、cs. So it is highly necessary for us to grasp to calculate the determinant . There are 13 methods of calculating the determinant are summarized. And we introduce some techniques of Calculate the determinant by some typical examples. In this paper, we have been to discuss from the following three asp

5、ects of the applications of the determinants: To explore the relationship between the determinant and linear equations and the application in the solution of linear equations; examples of the application of the determinant in algebra, such as the application of factorization, to prove that inequalit

6、y and identity; in the final, we have made overview of the number of applications of the determinants in analytic geometry.Key Words: Determinant;calculation skill ;Vander Mongolia determinant ; analysis Matrix; Linear equations; Rank; Factorization; Plane group; Point group 引 言行列式出现于线性方程组的求解,它最早是一种

7、速记的表达式,现在已经是数学中一种非常有用的工具。行列式是由莱布尼茨发明的。同时代的日本数学家关孝和在其著作解伏题元法中也提出了行列式的概念与算法。1750年,瑞士数学家克拉默(1704-1752)在其著作线性代数分析导引中,对行列式的定义和展开法则给出了比较完整、明确的阐述,并给出了现在我们所称的解线性方程组的克拉默法则。稍后,数学家贝祖 (1730-1783)将确定行列式每一项符号的方法进行了系统化,利用系数行列式概念指出了如何判断一个齐次线性方程组有非零解。行列式在高等代数课程中的重要性以及在考研中的重要地位使我们有必要对行列式进行较深入的认识,本文对行列式的解题技巧和它的简单应用进行总

8、结归纳。 作为行列式本身而言,我们可以发现它的两个基本特征:当行列式是一个三角形行列式时,计算将变得十分简单,于是将一个行列式化为三角形行列式便是行列式计算的一个基本思想;行列式的另一特征便是它的递归性,即一个行列式可以用比它低阶的一系列行列式表示,于是对行列式降阶从而揭示其内部规律也是我们的一个基本想法,即递推法。这两种方法也经常一起使用,而其它方法如:加边法、降阶法、数学归纳法、拆行(列)法、因式分解法等可以看成是它们衍生出的具体方法。同时行列式的应用早已超出了代数的范围,成为解析几何,数学分析,概率统计等数学分支的基本工具。1行列式的定义和性质1.1行列式定义定义 行列式与矩阵不同,行列

9、式是一个值,它是所有不同行不同列的数的积的和,那些数的乘积符号由他们的逆序数之和有关,逆序数为偶数,符号为正,逆序数为奇数,符号为负。例1 .解:不为零的项一般表示为,故.1.2行列式的性质 按照行列式的值可分为以下几类:性质1 行列式值为01) 如果行列式有两行(列)相同,则行列式值为0;2) 如果行列式有两行(列)成比例,则行列式值为0;3) 行列式中有一行(列)为0,则行列式的值为0。性质2 行列式值不变1) 把一行(列)的倍数加到另一行(列),行列式值不变, 即 (6)其中。2) 行列互换,行列式值不变, 即= (7)3) 如果行列式的某一行(列)是两组数的和,那么它就等于两个行列式的

10、和, 这两个行列式除这一行(列)外其余与原来行列式对应相同,即 (8)性质3 行列式的值改变 一行(列)的公因子可以提出去,或者说用一数乘以行列式的一行(列)就等于用该数乘以此行列式 (9)性质4 行列式反号对换行列式两行(列)的位置,行列式反号 (10)例2 一个阶行列式 的元素满足则称反对称行列式,证明:奇阶数行列式为零.证明: 由知,即.故行列式可表示为,由行列式的性质,.当n为奇数时,得因而得.2 求解行列式的技巧2.1 定义法当行列式中含零元较多时,定义法可行。例3 计算n级行列式 解:按定义,易见=1, 2,=n,或=2,=3,=n, =1.得 D=+2.2 三角形行列式法化三角形

11、法是将原行列式化为上(下)三角形行列式或对角形行列式计算的一种方法。这是计算行列式的基本方法重要方法之一。因为利用行列式的定义容易求得上(下)三角形行列式或对角形行列式的性质将行列式化为三角形行列式计算。因此,在许多情况下,总是先利用行列式的性质将其作为某种保值变形,再将其化为三角形行列式。例4:浙江大学2004年攻读硕士研究生入学考试试题第一大题第2小题(重庆大学2004年攻读硕士研究生入学考试试题第三大题第1小题)的解答中需要计算如下行列式的值:分析显然若直接化为三角形行列式,计算很繁,所以我们要充分利用行列式的性质。注意到从第1列开始;每一列与它一列中有n-1个数是差1的,根据行列式的性

12、质,先从第n-1列开始乘以1加到第n列,第n-2列乘以1加到第n-1列,一直到第一列乘以1加到第2列。然后把第1行乘以1加到各行去,再将其化为三角形行列式,计算就简单多了。解:2.3 析因法如果行列式D中有一些元素是变数x(或某个参变数)的多项式,那么可以将行列式D当作一个多项式f(x),然后对行列式施行某些变换,求出f(x)的互素的一次因式,使得f(x)与这些因式的乘积g(x)只相差一个常数因子C,根据多项式相等的定义,比较f(x)与g(x)的某一项的系数,求出C值,便可求得D=Cg(x) 。那在什么情况下才能用呢?要看行列式中的两行(其中含变数x),若x等于某一数a1时,使得两行相同,根据

13、行列式的性质,可使得D=0。那么x a1便是一个一次因式,再找其他的互异数使得D=0,即得到与D阶数相同的互素一次因式,那么便可用此法。例5:兰州大学2004招收攻读硕士研究生考试工试题第四大题第(1)小题。需求如下行列式的值。分析 根据该行列式的特点,当时,有。但大家认真看一下,该行列式Dn+1是一个n+1次多项式,而这时我们只找出了n个一次因式,那么能否用析因法呢?我们再仔细看一下,每行的元素的和数都是一样的,为:,那么我们从第2列开始到第n+1列都加到第1列,现提出公因式,这样行列式的次数就降了一次。从而再考虑析因法。解:令:显然当:时,12。又为n次多项式。又中的最高次项为,系数为1,

14、C=1因此得:2. 4 连加法若行列式中某加上其余各列(行),使该列(行)元素均相等或出现较多零,从而简化行列式计算的方法称为连加法。 解:它的特点是各列元素之和为 (n-1)a+x,因此把各行都加到第一行,然而第一行再提出(n-1)a+x ,得将第一行乘以(-a)分别加到其余各行,化为三角形行列式,则25按行按列展开(降阶法)降阶法是按某一行(或一列)展开行列式,这样可以降低一阶,更一般地是用拉普拉斯定理,这样可以降低多阶,为了使运算更加简便,往往是根据行列式的特点,先利用列式的性质化简,使行列式中有较多的零出现,然后再展开。例7 计算行列式 .解: 按第1行展开: .2. 6递推法应用行列

15、式的性质,把一个n阶行列式表示为具有相同结构的较低阶行列式(比如,n-1阶或n-1阶与n-2阶等)的线性关系式,这种关系式称为递推关系式。根据递推关系式及某个低阶初始行列式(比如二阶或一阶行列式)的值,便可递推求得所给n阶行列式的值,这种计算行列式的方法称为递推法。例8,2003年福州大学研究生入学考试试题第二大题第10小题要证如下行列式等式:分析此行列式的特点是:除主对角线及其上下两条对角线的元素外,其余的元素都为零,这种行列式称“三对角”行列式1。从行列式的左上方往右下方看,即知Dn-1与Dn具有相同的结构。因此可考虑利用递推关系式计算。证明:Dn按第1列展开,再将展开后的第二项中n-1阶

16、行列式按第一行展开有:这是由Dn-1 和Dn-2表示Dn的递推关系式。若由上面的递推关系式从n阶逐阶往低阶递推,计算较繁,注意到上面的递推关系式是由n-1阶和n-2阶行列式表示n阶行列式,因此,可考虑将其变形为:或现可反复用低阶代替高阶,有:同样有:因此当时由(1)(2)式可解得:2. 7数学归纳法一般是利用不完全归纳法寻找出行列式的猜想值,再用数学归纳法给出猜想的证明。因此,数学归纳法一般是用来证明行列式等式。因为给定一个行列式,要猜想其值是比较难的,所以是先给定其值,然后再去证明。例9证明:证:当时,有:结论显然成立。现假定结论对小于等于时成立。即有:将按第1列展开,得: 故当对时,等式也

17、成立。得证。2. 8加边法(升阶法)有时为了计算行列式,特意把原行列式加上一行一列再进行计算,这种计算行列式的方法称为加边法或升阶法。当然,加边后必须是保值的,而且要使所得的高一阶行列式较易计算。要根据需要和原行列式的特点选取所加的行和列。加法适用于某一行(列)有一个相同的字母外,也可用于其列(行)的元素分别为n-1个元素的倍数的情况。加边法的一般做法是:特殊情况取 或 例10、计算n 阶行列式:分析 我们先把主对角线的数都减1,这样我们就可明显地看出第一行为x1与x1,x2, xn相乘,第二行为x2与x1,x2, xn相乘,第n行为xn与 x1,x2, xn相乘。这样就知道了该行列式每行有相

18、同的因子x1,x2, xn,从而就可考虑此法。解:2. 9拆项法由行列式拆项性质知,将已知行列式拆成若干个行列式之积,计算其值,再得原行列式值,此法称为拆行(列)法。由行列式的性质知道,若行列式的某行(列)的元素都是两个数之和,则该行列式可拆成两个行列式的和,这两个行列式的某行(列)分别以这两数之一为该行(列)的元素,而其他各行(列)的元素与原行列式的对应行(列)相同,利用行列式的这一性质,有时较容易求得行列式的值。例11、 南开大学2004年研究生入学考试题第1大题,要求下列行列式的值:设n阶行列式:且满足对任意数b,求n阶行列式 分析该行列式的每个元素都是由两个数的和组成,且其中有一个数是

19、b,显然用拆行(列)法。解: 也为反对称矩阵又为的元素从而知:2.10拉普拉斯法拉普拉斯定理的四种特殊情形:1) 2)3) 4)例12 计算n阶行列式:解:2.11利用范德蒙行列式法范德蒙行列式:例13 计算n阶行列式9解:显然该题与范德蒙行列式很相似,但还是有所不同,所以先利用行列式的性质把它化为范德蒙行列式的类型。先将的第n行依次与第n-1行,n-2行,,2行,1行对换,再将得到到的新的行列式的第n行与第n-1行,n-2行,,2行对换,继续仿此作法,直到最后将第n行与第n-1行对换,这样,共经过(n-1)+(n-2)+2+1=n(n-1)/2次行对换后,得到上式右端的行列式已是范德蒙行列式

20、,故利用范德蒙行列式的结果得: 3 行列式的应用行列式是研究数学的重要工具之一. 例如线性方程组、多元一次方程组的解、三维空间中多个平面组或多个点组的相关位置、初等代数、解析几何、维空间的投影变换、线性微分方程组等, 用行列式来进行计算是很便利的. 本文进一步研究探讨了行列式在线性方程组、初等代数、解析几何三个方面的应用.3.1 行列式在线性方程组中的应用 设含有个变元的个一次线性方程的方程组为 (1) 设方程组(1)的系数矩阵的秩是, 不失一般性, 假定不等于零的阶行列式是 . 行列式中的元素, 就是矩阵中去掉第一列的元素以后剩下的元素, 并按照它们的原有位置排列. 我们把看作是未知数, 是

21、已知数, 解方程组(1), 得 (2)式中是行列式的第列元素换以所成的行列式. 也就是.把中第列移到第一列, 得.上式右边的行列式用表示, 行列式是矩阵中去掉第列剩余下的元素所组成. 故.代入(2)式, 得, 或.结论2: 方程组(1)中的与成比例, 式中 是从矩阵中去掉第列剩余下的元素做成的行列式.3.2 行列式在初等代数中的应用3.2.1用行列式分解因式利用行列式分解因式的关键, 是把所给的多项式写成行列式的形式, 并注意行列式的排列规则. 下面列举几个例子来说明.例14分解因式:. 解 . 例15 分解因式: . 解 原式 .3.2.2 用行列式证明不等式和恒等式我们知道, 把行列式的某

22、一行(列)的元素乘以同一数后加到另一行(列)的对应元素上, 行列式不变; 如果行列式中有一行(列)的元素全部是零, 那么这个行列式等于零. 利用行列式的这些性质, 我们可以构造行列式来证明等式和不等式.例16 已知, 求证.证明 令, 则.命题得证.例17 已知 求证.证明 令, 则命题得证.例18 已知, 求证.证明 令, 则 而, 则, 命题得证.例 3.3 行列式在解析几何中的几个应用3.3.1 用行列式表示公式(1)用行列式表示三角形面积以平面内三点为顶点的的面积S是6 (3)的绝对值.证明 将平面三点扩充到三维空间, 其坐标分别为, 其中为任意常数. 由此可得: , 则面积为 = .

23、7(2)用行列式表示直线方程直线方程通过两点和的直线的方程为. (4) 证明 由两点式, 我们得直线的方程为.将上式展开并化简, 得此式可进一步变形为此式为行列式(4)按第三行展开所得结果. 原式得证.应用举例例19 若直线过平面上两个不同的已知点, , 求直线方程.解 设直线的方程为, 不全为0, 因为点在直线上, 则必须满足上述方程, 从而有这是一个以为未知量的齐次线性方程组, 且不全为0, 说明该齐次线性方程组有非零解. 其系数行列式等于0, 即.则所求直线的方程为.同理, 若空间上有三个不同的已知点, 平面过, 则平面的方程为.同理, 若平面有三个不同的已知点, 圆过, 则圆的方程为.

24、3.3.2 行列式在平面几何中的一些应用(1)三线共点 平面内三条互不平行的直线相交于一点的充要条件是.(2)三点共线 平面内三点在一直线的充要条件是.应用举例例 20平面上给出三条不重合的直线:, 若, 则这三条直线不能组成三角形.证明 设与的交点为, 因为,将第1列乘上, 第2列乘上, 全加到第3列上去, 可得:.因为在与上, 所以, 且若与平行, 若也在上交于一点,无论何种情形, 都有不组成三角形.这说明由, 得到三条直线或两两平行或三线交于一点. 也就是三条直线不能组成三角形.3.3 .3行列式在三维空间中的应用(1) 平面组设由个平面方程构成的方程组为 (5)若方程组(5)中的各代以

25、, 并用乘以(5)式两端: 得 (6)叫做点的齐次坐标. 这平面组的相关位置与方程组的系数所组成的两矩阵 及 的秩及有关系. 现在分别叙述如下:()当, 则方程组中各系数全是0.()当 则方程组(5)不合理, 方程组(6)有解.当, 将趋近于无穷大(假设趋近于0). 在这种情况下, 我们说这个平面在无穷远重合.()当, 则在矩阵及中所有二阶行列式全是0. 所以我们有以上等式表示个平面相合成一个平面.)当 方程的系数中至少有两组数如及满足以下关系式上式表示平面平行但不相合. 也就是平面组中个平面相合或平行, 至少有两个平面不相合. () 则矩阵及中所有三阶行列式全是0, 至少有一个二阶行列式不是

26、0. 假设.我们必可求得适合下式:式中, 否则行列式将等于0. 所以.以上等式表示平面经过直线就是个平面全经过一条直线. ()当 并假定方程组的系数至少有一组适合以下关系:(是中的一数)以上第一个等式表示组中第平面,与直线平行. 又因第二个不等式表示第平面不经过上述直线, 所以个平面有平行的交线.例如由方程组解得.因为行列式.而其它三个行列式不全是零故, 就是三个平面的交点在无穷远. 三个平面中每两个平面的交线是平行的.()当, 并假定.在这种情况下, 平面相交于一点. 又因,()故平面经过前面三个平面的交点, 就是个平面有一个交点, 不在无穷远.()当, 则矩阵中至少有一个四阶行列式不等于零

27、. 假设.(是中的一数)以上不等式表示平面,不经过前三个平面的交点.(2)点组设有个点, 它们的齐次坐标各是此点组的相关位置与坐标做成的矩阵的秩有关系. 分别叙述如下: ()当, 则个点的坐标全是(0,0,0,0)不能确定点的位置.()当, 假定, 很容易推得(因为中所有的二阶行列式等于0)上式表示个点全重合. ()当, 并假设,因中所有三阶行列式全等于0, 我们可以求得适合以下方程:式中不等于0, 否则行列式将等于0. 故可求得假设点及的连线为把的等值代入上式, 易验证点在这连线上, 故该点与第一及第二两点共在一直线上. 因可以是, 所以个点全在一直线上.()当, 并假定中所有的四阶行列式全

28、是0, 我们可以求得适合下式:式中不等于0, 否则行列式从以上方程组求得:设点及所确定的平面是把的等值代入上式, 甚易验明点在这个平面上, 故该点与前三个点共在一平面上. 又因为可以是, 所以个点共在一个平面上. ()当, 中至少有一个四阶行列式如.是中任一个数. 以上不等式表示点不在前三个点所确定的平面上, 因为假设点在平面上, 则以下关系成立.也就是行列式这与假设矛盾.8 参考文献1、北京大学数学系几何与代数教研小组编.高等数学(第三版)M.北京:高等教育出版社,20032、毛纲源.线性代数解题方法技巧归纳M.武汉:华中科技大学出版社,20003、许甫华.高等代数解题方法M.北京:清华大学

29、出版社,20034、张贤科,许浦华 高等代数学M.北京 清华大学出版社,20035、胡乔林.关于行列式的定义及其计算方法M,科技信息,2007,256、万广龙. 行列式的计算方法与技巧J. Chinas Foreign Trade , 2011,(04) 7、杨鹏辉.行列式的计算技巧J. 宜春学院学报 , 2011,(04) 8、周宁, 夏益斌. 行列式在解析几何中的应用J. 昆明冶金高等专科学校学报 , 2011,(01) 9钱吉林. 高等代数题解精粹M. 北京: 中央民族大学出版社, 2002. 10彭丽清. 行列式的应用J. 忻州师范学院学报, 2005(5), 40-41. 11北京大

30、学数学系几何与代数教研室代数小组. 高等代数(第三版)M. 北京: 高等教育出社, 2003. 12高杨芝. 行列式浅说M. 江苏: 江苏人民出版社, 1958. 9 致谢本文是在李老师精心指导和大力支持下完成的。李老师以其严谨求实的治学态度、高度的敬业精神、兢兢业业、孜孜以求的工作作风和大胆创新的进取精神对我产生重要影响。她渊博的知识、开阔的视野和敏锐的思维给了我深深的启迪。同时,在此次毕业设计过程中我也学到了许多的关于行列式方面的知识,视野得到了极大的开阔。同时我还要感谢我们班的同学,是他们的督促与指导给了我好大的动力。 另外,我还要特别感谢学校为我完成这篇论文提供了巨大的帮助,使我得以顺利完成论文。最后,再次对关心、帮助我的老师和同学表示衷心地感谢

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 办公文档 > 其他范文


备案号:宁ICP备20000045号-2

经营许可证:宁B2-20210002

宁公网安备 64010402000987号