《模糊控制理论的心得与体会.doc》由会员分享,可在线阅读,更多相关《模糊控制理论的心得与体会.doc(5页珍藏版)》请在三一办公上搜索。
1、模糊控制理论的心得与体会模糊理论(Fuzzy Logic)是在美国加州大学伯克利分校电气工程系的L.A.zadeh教授于1965年创立的模糊集合理论的数学基础上发展起来的,主要包括模糊集合理论、模糊逻辑、模糊推理和模糊控制等方面的内容.美国加州大学的L.A.Zadeh教授在1965年发表了著名的论文,文中首次提出表达事物模糊性的重要概念:隶属函数,从而突破了19世纪末笛卡尔的经典集合理论,奠定模糊理论的基础. 1966年,P.N.Marinos发表模糊逻辑的研究报告,1974年,L.A.Zadeh发表模糊推理的研究报告,从此,模糊理论成了一个热门的课题。 1974年,英国的E.H.Mamdan
2、i首次用模糊逻辑和模糊推理实现了世界上第一个实验性的蒸汽机控制,并取得了比传统的直接数字控制算法更好的效果,从而宣告模糊控制的诞生。1980年丹麦的L.P.Holmblad和Ostergard在水泥窑炉采用模糊控制并取得了成功,这是第一个商业化的有实际意义的模糊控制器。 事实上,模糊理论应用最有效,最广泛的领域就是模糊控制,模糊控制在各种领域出人意料的解决了传统控制理论无法解决的或难以解决的问题,并取得了一些令人信服的成效。 一 模糊控制的基本思想及应用方向 把人类专家对特定的被控对象或过程的控制策略总结成一系列以IF(条件)THEN(作用)形式表示的控制规则,通过模糊推理得到控制作用集,作用
3、于被控对象或过程.控制作用集为一组条件语句,状态语句和控制作用均为一组被量化了的模糊语言集,如正大,负大,正小,负小,零等。 模糊控制的几个研究方向: 模糊控制的稳定性研究 模糊模型及辩识 模糊最优控制 模糊自组织控制 模糊自适应控制 多模态模糊控制 模糊理论发展至今已接近三十余年,应用的范围非常广泛,从工程科技到社会人文科学都可以发现模糊理论研究的踪迹与成果。我们分别由工程科技与社会人文科学的角度,了解模糊理论应用的范畴。 (一)、工程科技方面 1、型样识别:文字识别、指纹识别、手写字体辨识、影像辨识2、控制工程:机器人控制、汽车控制、家电控制、工业仪表控制 3、信号及资讯处理:影像处理、语
4、音处理、资料整理、数据库管理 4、人工智能及专家系统:故障诊断、自然语言处理、自动翻译 5、环保:废水处理、净水处理厂工程、空气污染检验、空气品质监控 6、其他:建筑结构分析、化工制程控制 (二)、 教育、社会及人文科学方面 1、教育:教学成果评量、心理测验、性向测验、计算机辅助教学 2、心理学:心理分析、性向测验 3、决策决定:决策支援、决策分析、多目标评价、风险分析 二 模糊控制规则的来源模糊控制规则的取得方式: () 专家的经验和知识 前面曾经提到模糊控制也称为控制上的专家系统,专家的经验和知识是设计上有余力的线索。人类日常生活常中判断事情时,使用语言定性分析多于数值定量分析;而模糊控制
5、规则提供了一个自然的架构来描述人类的行为及决策分析,并且专家的知识通常可用if.then的型式来表示。 藉由询问经验丰富的专家,在获得系统的知识后,将知识改为if.then的型式,则如此便可构成模糊控制规则。为了获得最佳的系统性能,常需多次使用试误法,以修正模糊控制规则。 () 操作员的操作模式 现在流行的专家系统,其想法只考虑知识的获得,专家巧妙地操作复杂的控制对象,但要将专家的诀窍加以逻辑化并不容易;因此,在控制上也要考虑技巧的获得。在许多工业系统无法以一般的控制理论做正确的控制,但是熟练的操员在没有数学模式下,也能够成功地控制这些系统;因此,记录操作员的操作模式,并将其整理为if.the
6、n的型式,可构成一组控制规则。 () 学习 为了改善模糊控制器的性能,必须让它有自我学习或自我组织的能力,得模糊控制器能依设定的目标,增加或修改模糊控制规则。 所谓模糊概念是指这个概念的外延具有不确定性,或者说它的外延是不清晰的,是模糊的。例如“青年”这个概念,它的内涵我们是清楚的,但是它的外延,即什么样的年龄阶段内的人是青年,恐怕就很难说情楚,因为在“年轻”和“不年轻”之间没有一个确定的边界,这就是一个模糊概念。 需要注意的几点:首先,人们在认识模糊性时,是允许有主观性的,也就是说每个人对模糊事物的界限不完全一样,承认一定的主观性是认识模糊性的一个特点。例如,我们让100个人说出“年轻人”的
7、年龄范围,那么我们将得到100个不同的答案。尽管如此,当我们用模糊统计的方法进行分析时,年轻人的年龄界限分布又具有一定的规律性; 其次,模糊性是精确性的对立面,但不能消极地理解模糊性代表的是落后的生产力,恰恰相反,我们在处理客观事物时,经常借助于模糊性。例如,在一个有许多人的房间里,找一位“年老的高个子男人”,这是不难办到的。这里所说的“年老”、“高个子”都是模糊概念,然而我们只要将这些模糊概念经过头脑的分析判断,很快就可以在人群中找到此人。如果我们要求用计算机查询,那么就要把所有人的年龄,身高的具体数据输入计算机,然后我们才可以从人群中找这样的人。 最后,人们对模糊性的认识往往同随机性混淆起
8、来,其实它们之间有着根本的区别。随机性是其本身具有明确的含义,只是由于发生的条件不充分,而使得在条件与事件之间不能出现确定的因果关系,从而事件的出现与否表现出一种不确定性。而事物的模糊性是指我们要处理的事物的概念本身就是模糊的,即一个对象是否符合这个概念难以确定,也就是由于概念外延模糊而带来的不确定性。 三 模糊控制基础模糊控制的基本思想是利用计算机来实现人的控制经验,而这些经验多是用语言表达的具有相当模糊性的控制规则。模糊控制器(Fuzzy Controller,即FC)获得巨大成功的主要原因在于它具有如下一些突出特点: 模糊控制是一种基于规则的控制。它直接采用语言型控制规则,出发点是现场操
9、作人员的控制经验或相关专家的知识,在设计中不需要建立被控对象的精确数学模型,因而使得控制机理和策略易于接受与理解,设计简单,便于应用。由工业过程的定性认识出发,比较容易建立语言控制规则,因而模糊控制对那些数学模型难以获取、动态特性不易掌握或变化非常显著的对象非常适用。基于模型的控制算法及系统设计方法,由于出发点和性能指标的不同,容易导致较大差异;但一个系统的语言控制规则却具有相对的独立性,利用这些控制规律间的模糊连接,容易找到折中的选择,使控制效果优于常规控制器。模糊控制算法是基于启发性的知识及语言决策规则设计的,这有利于模拟人工控制的过程和方法,增强控制系统的适应能力,使之具有一定的智能水平
10、。模糊控制系统的鲁棒性强,干扰和参数变化对控制效果的影响被大大减弱,尤其适合于非线性、时变及纯滞后系统的控制。 四 模糊控制的特点简化系统设计的复杂性,特别适用于非线性、时变、模型不完全的系统上。利用控制法则来描述系统变量间的关系。不用数值而用语言式的模糊变量来描述系统,模糊控制器不必对被控制对象建立完整的数学模式。模糊控制器是一语言控制器,使得操作人员易于使用自然语言自然语言进行人机对话。模糊控制器是一种容易控制、掌握的较理想的非线性控制器,具有较佳的适应性及强健性(Robustness)、较佳的容错性(Fault Tolerance)。 “模糊”是人类感知万物,获取知识,思维推理,决策实施
11、的重要特征。“模糊”比“清晰”所拥有的信息容量更大,内涵更丰富,更符合客观世界。 在日常生活中,人们的思维中有许多模糊的概念,如大、小、冷、热等,都没有明确的内涵和外延,只能用模糊集合来描述。人们常用的经验规则都是用模糊条件语句表达,例如,当我们拧开水阀往水桶里注水时,有这样的经验:桶里没水或水较少时,应开大水阀;桶里水较多时,应将水阀关小些;当水桶里水快满时,则应把阀门关得很小;而水桶里水满时应迅速关掉水阀。其中,“较少”、“较多”、“小一些”、“很小”等,这些表示水位和控制阀门动作的概念都具有模糊性。即有经验的操作人员的控制规则具有相当的模糊性。模糊控制就是利用计算机模拟人的思维方式,按照
12、人的操作规则进行控制,实现人的控制经验。 模糊控制理论是由美国著名的学者加利福尼亚大学教授ZadehLA于1965年首先提出,它以模糊数学为基础,用语言规则表示方法和先进的计算机技术,由模糊推理进行决策的一种高级控制策略。 1974年,英国伦敦大学教授MamdaniEH研制成功第一个模糊控制器,充分展示了模糊技术的应用前景。 五 模糊控制理论研究的现状 尽管模糊控制理论已经取得了可观的进展,但与常规控制理论相比仍不成熟。模糊控制系统的分析和设计尚未建立起有效的方法,在很多场合下仍然需要依靠经验和试凑。近年来,许多人一直尝试将常规控制理论的概念和方法扩展至模糊控制系统,而模糊控制与神经网络相结合
13、的方法已成为研究的热点,二者的结合有效地推动了自学习模糊控制的发展。 模糊控制易于获得由语言表达的专家知识,能有效地控制那些难以建立精确模型而凭经验可控制的系统,而神经网络则由于其仿生特性更能有效利用系统本身的信息,并能映射任意函数关系,具有并行处理和自学习能力,容错能力也很强。在集成大系统中,神经网络可用于处理低层感知数据,模糊逻辑可用于描述高层的逻辑框架。模糊逻辑与神经网络的结合有两种情况:一是将模糊技术用于神经网络形成模糊神经网络,一是用神经网络实现模糊控制。这两方面均见于大量的研究文献。 利用模糊复合控制理论的分档控制,将PI或PID控制策略引入Fuzzy控制器,构成Fuzzy-PI或
14、Fuzzy-PID复合控制;适应高阶系统模糊控制需要的三维模糊控制器;将精确控制和模糊控制结合起来的精确模糊混合控制;将预测控制与模糊控制相结合,利用预测模型对控制结果进行预报,并根据目标误差和操作者的经验应用模糊决策方法在线修正控制策略的模糊预测控制等。 模糊控制的发展过程中,提出了多种自组织、自学习、自适应模糊控制器。它们根据被控过程的特性和系统参数的变化,自动生成或调整模糊控制器的规则和参数,达到控制目的。这类模糊控制器在实现人的控制策略基础上,又进一步将人的学习和适应能力引入控制器,使模糊控制具有更高的智能性。自校正模糊控制器、参数自调整模糊控制等控制方法也都较大地增强了对环境变化的适
15、应能力。 模糊控制与其他智能控制方法的结合组成的模糊控制,如专家模糊控制能够表达和利用控制复杂过程和对象所需的启发式知识,重视知识的多层次和分类的需要,弥补了模糊控制器结构过于简单、规则比较单一的缺陷,赋予了模糊控制更高的智能。二者的结合还能够拥有过程控制复杂的知识,并能够在更为复杂的情况下对这些知识加以有效利用。基于神经网络的模糊控制能够实现局部或全部的模糊逻辑控制功能。 模糊控制器正向着自适应、自组织、自学习方向发展,使得模糊控制参数、规则在控制过程中自动地调整、修改和完善,从而不断完善系统的控制性能,达到更好的控制效果,而与专家系统、神经网络等其他智能控制技术相融合成为其发展趋势。 六 模糊控制的缺点 1.模糊控制的设计尚缺乏系统性,这对复杂系统的控制是难以奏效的。所以如何建立一套系统的模糊控制理论,以解决模糊控制的机理、稳定性分析、系统化设计方法等一系列问题; 2.如何获得模糊规则及隶属函数即系统的设计办法,这在目前完全凭经验进行; 3.信息简单的模糊处理将导致系统的控制精度降低和动态品质变差。若要提高精度则必然增加量化级数,从而导致规则搜索范围扩大,降低决策速度,甚至不能实时控制; 4.如何保证模糊控制系统的稳定性即如何解决模糊控制中关于稳定性和鲁棒性问题。 - 5 -