毕业设计基于单片机控制的步进电动机设计.doc

上传人:laozhun 文档编号:3975250 上传时间:2023-03-30 格式:DOC 页数:51 大小:1.32MB
返回 下载 相关 举报
毕业设计基于单片机控制的步进电动机设计.doc_第1页
第1页 / 共51页
毕业设计基于单片机控制的步进电动机设计.doc_第2页
第2页 / 共51页
毕业设计基于单片机控制的步进电动机设计.doc_第3页
第3页 / 共51页
毕业设计基于单片机控制的步进电动机设计.doc_第4页
第4页 / 共51页
毕业设计基于单片机控制的步进电动机设计.doc_第5页
第5页 / 共51页
点击查看更多>>
资源描述

《毕业设计基于单片机控制的步进电动机设计.doc》由会员分享,可在线阅读,更多相关《毕业设计基于单片机控制的步进电动机设计.doc(51页珍藏版)》请在三一办公上搜索。

1、 摘 要单片计算机即单片微型计算机。由RAM ,ROM,CPU构成,定时,计数和多种接口于一体的微控制器。它体积小,成本低,功能强,广泛应用于智能产业和工业自动化上。本文主要研究基于AT89C51 单片机的步进电机的驱动器控制,驱动系统采用74LS47和达林顿管,使步进电机可在智能化程序控制下完成正转、反转、转数设定等各种操作。文中在单片机与驱动器之间增加一级光电隔离可使步进电机具有更高的性能,同时把数字电路与驱动电路隔离开,避免了步进电机运行时所产生的冲击电压和电流干扰单片机。要想达到步进电动机的快速启停、高精度步进运行从而实现工业生产的控制,则采用单片机控制系统可将问题大大的简化。不仅能简

2、化线路,降低成本,而且能大大的提高其可靠性。整个系统采用模块化设计,结构简单,可靠,通过人机交互换接口可实现各功能设置,操作简单,易于掌握。该系统可应用于步进电机在机电一体化控制等大多数场合。实践证明,基于单片机控制的步进电机比传统的步进控制器具有更好的性能,更加简单、方便、可靠。本设计的主要研究对象就是开环伺服系统中最常用的执行器件步进电机。在这科技越来越发达的时代,人们对步进电动机控制技术的要求也越来越高。运用单片机对其高精度和智能化控制一直备受关注,对其高新技术的开发持续不断,单片机系统控制的研究具有很大的开发潜能,本控制系统的设计,由硬件设计和软件设计两部分组成。其中,硬件设计主要包括

3、单片机最小系统、键盘控制模块、步进电机驱动模块、数码显示模块等功能模块的设计,以及硬件电路在电路板上的实现。软件设计包括主程序以及各个模块的控制程序,最终实现对步进电机转动方向及转动速度的控制,并且将步进电机的转动速度动态显示在LED数码管上。本系统具有智能性、实用性及可靠性的特点。关键词:AT89C51 步进电机 目 录摘要绪论1第一章 系统方案论证31.1 系统基本功能31.2 设计方案介绍31.3 系统设计3第二章 硬件设计42.1 单片机系统42.1.1 AT89C51功能概述42.2 步进电机122.2.1 步进电机的分类122.2.2 步进电机概述132.2.3 电机的工作原理15

4、2.3 数码管显示电路192.4 键盘控制电路212.5 光电耦合器与驱动系统222.6 显示块242.7 单片机与步进电机的接口电路图26第三章 控制系统的软件283.1程序设计思路283.1.1程序流程图28第四章 仿真与调试34第五章 设计小结35附录36参考文献41感谢42 绪 论步进电动机又称脉冲电动机或阶跃电动机,国外一般称为Steppingmotor、 Pulse motor或Stepper servo,其应用发展已有约80年的历史。步进电机是一种把电脉冲信号变成直线位移或角位移的控制电机,其位移速度与脉冲频率成正比,位移量与脉冲数成正比。步进电机在结构上也是由定子和转子组成,可

5、以对旋转角度和转动速度进行高精度控制。当电流流过定子绕组时,定子绕组产生一矢量磁场,该矢量场会带动转子旋转一角度,使得转子的一对磁极磁场方向与定子的磁场方向一着该磁场旋转一个角度。因此,控制电机转子旋转实际上就是以一定的规律控制定子绕组的电流来产生旋转的磁场。每来一个脉冲电压,转子就旋转一个步距角,称为一步。根据电压脉冲的分配方式,步进电机各相绕组的电流轮流切换,在供给连续脉冲时,就能一步一步地连续转动,从而使电机旋转。步进电机每转一周的步数相同,在不丢步的情况下运行,其步距误差不会长期积累。在非超载的情况下,电机的转速、停止的位置只取决于脉冲信号的频率和脉冲数,而不受负载变化的影响,同时步进

6、电机只有周期性的误差而无累积误差,精度高,步进电动机可以在宽广的频率范围内通过改变脉冲频率来实现调速、快速起停、正反转控制等,这是步进电动机最突出的优点。正是由于步进电机具有突出的优点,所以成了机电一体化的关键产品之一,广泛应用在各种自动化控制系统中。随着微电子和计算机技术的发展,步进电机的需求量与日俱增,在各个国民经济领域都有应用。比如在数控系统中就得到广泛的应用。目前世界各国都在大力发展数控技术,我国的数控系统也取得了很大的发展,我国已经能够自行研制开发适合我国数控机床发展需要的各种档次的数控系统。虽然与发达国家相比,我们我国的数控技术方面整体发展水平还比较低,但已经在我国占有非常重要的地

7、位,并起了很大的作用。除了在数控系统中得到广泛的应用,近年来由于微型计算机方面的快速发展,使步进电机的控制发生了革命性变革。优点明显的步进电机被广泛应用在电子计算机的许多外围设备中,例如打印机,纸带输送机构,卡片阅读机,主动轮驱动机构和存储器存取机构等,步进电机也在军用仪器,通信和雷达设备,摄影系统,光电组合装置,阀门控制,数控机床,电子钟,医疗设备及自动绘图仪,数字控制系统,工具机控制,程序控制系统以及许多航天工业的系统中得到应用。因而,对于步进电机控制的研究也就显得尤为重要了。为了得到良好的控制性能,对步进电机的控制的研究就一直没有停止过,许多重大的技术得以实现。上世纪80年代以后,由于微

8、型计算机以多功能的姿态出现,步进电动机的控制方式变得更加灵活多样。原来的步进电机控制系统采用分立元件的控制回路,或者集成电路,不仅调试安装复杂,要消耗大量元器件,而且一旦定型之后,要改变控制方案就一定要重新设计电路,不利于系统的改进升级。基于微型单片机的控制系统则通过软件来控制步进电机,能够更好地发挥步进电机的潜力。因此,用微型单片机控制步进电机己经成为了一种必然的趋势,也符合数字化的时代发展要求。还比如为了适应一些领域中高精度定位和运行平稳性的要求,出现的步进电机细分驱动技术,就包括振荡器、环行分配器控制的细分驱动、基于单片机斩波恒流驱动、基于单片机的直流电压驱动三种常见驱动方式,除上述三种

9、步进电机的驱动方案之外,目前报道的驱动方案还有根据汇编语言或C语言进行软件开发,通过串行或并行通行的方式实现机与步进电机控制器之间的数据通信,最终实现由PC机直接控制步进电机的方法。但是在有些应用场合,并不需要高精度的控制,而是需要在满足一般工作要求的情况下,尽量使控制系统做到:系统硬件结构简单,成本低;功能较为齐全;适应性强;电机各种运行状态指示一目了然,操作方便;系统抗干扰能力强,可靠性高等要求。本论文就是采用这个思路进行设计。一般步进电机控制器都用硬件实现,虽然电路可以做到了高集成度,可价格较贵,功能相对较单一,并且设计要求有所改变,就得改变整个硬件电路,比较麻烦。而采用单片机的软件和硬

10、件结合进行控制,运用其强大的可编程和运算功能,充分利用单片机的各种资源,能灵活的对步进电机进行控制,实现其不同模式、步数、正反转、转速等控制,如果需改变控制要求,一般只需改变软件就能适应新的环境,并且在本设计中利用动态扫描技术,把显示电路和键盘电路有机的结合起来,能做到一定的人机交换,而且为了抗干扰,提高可靠性,具有一定的应用价值。第一章 系统方案论证1.1 系统基本功能设计的步进电机控制器。要求内能从键盘上输入步进电机转数,控制步进电机的正反转及启停,并显示转数。具体要求如下:(1) 键盘设计09: 数字键。*:正逆转数设定完成后,按“*”启动步进电动机。#:清除设定为正转及转数为00。A:

11、设定正逆转。按“A”键则LED指示灯亮,表示逆转,再按则LED只是等灭,表示正转。(2) 控制过程 送电时,设定为正转,显示器显示为“00”。 输入转数,显示器显示输入的转数,按“A”设定正逆转,LED指示灯亮表示逆转,LED指示灯灭表示正转,然后按“*”步进电动机开始运行。 步进电机每转一转,显示器减1,直至为00,步进电动机停止运转。 1.2设计方案介绍根据功能设计的要求本设计采用AT89C51单片机系统控制运用矩阵式键盘作为输入控制端驱动系统采用74LS04和达林顿管,使步进电机可在智能化程序控制下完成正转、反转、转数设定等各种操作。文中在单片机与驱动器之间增加一级光电隔离。可使步进电机

12、具有更高的性能,同时把数字电路与驱动电路隔离开,避免了步进电机运行时所产生的冲击电压和电流干扰单片机。1.3 系统设计要想实现以上论述的功能只要通过P1口的键盘输入并按一定的顺序改变P0口输出的脉冲信号,从而改变步进电动机四端通电的状况,即可控制步进电机依选定的方向步进。同时通过显示器同步的显示相应数据。依据以上描述可画出控制系统的结构框图如图 1.1所示 图1.1 步进电机控制器结构框图控制系统包括:键盘输入模块、显示、指示模块以及步进电机控制及驱动模块。键盘输入模块主要完成数据输入及控制输入,显示模块完成转数的显示。步进电机模块主要是由单片机输出控制码到驱动机构控制步进电动机的运转。第二章

13、 硬件设计21单片机系统 2.1.1 AT89C51功能概述AT89C51是美国ATMEL公司生产的低电压,高性能CMOS 8位单片机,片内含4K bytes的可反复擦写的只读程序存储器PEROM和128bytes的随机存取数据存储器,器件采用公司的高密度,非易失性存储技术生产,兼容标准MCS-51指令系统,片内置通用8位中央处理器和FLASH存储单元,功能强大。此单片机可为您提供许多高性价比的应用场合。AT89C51提供以下标准功能:4K字节FLASH闪速存储器,128字节内部RAM,32个I/O口线,两个16位定时/计数器,一个向量两级中断结构,一个全双工串行通讯口,内置一个精密比较器,片

14、内振荡器及时钟电路,同时AT89C51可降至0Hz的静态逻辑操作,并支持两种软件可选的工作模式,空闲方式停止CPU的工作,但允许RAM,定时计数器,串行通信及中断系统继续工作。掉电方式保存RAM中的内容,但振荡器停止工作,并禁止其它所有部件工作直到下一个硬件复位。(1)引脚功能说明MCS-51是标准的40脚双列直插式集成电路芯片,引脚排列请参见图2.1:图2.1 AT89C51的引脚图VCC:电源电压; GND:地;P0口:P0口是一组8位漏极开路型双向I/O口,也即地址/数据总线复用口。作为输出口用时,每位能吸收电流的方式驱动8个TTL逻辑门电路,对端口写1可作为高阻抗输入端用。在访问外部数

15、据存储器或程序存储器时,这组口线分时转换地址(低8位)和数据总线复用,在访问期间激活内部上拉电阻。在FLASH编程时,P0口接受指令字节,而在程序效验时,输出指令字节,效验时,要求外接上拉电阻。P1口:P1口是一个带有内部上拉电阻的8位双向I/O口,P1的输出缓冲级可驱动 (吸收或输出电流)4个TTL逻辑门电路。对端口写1,通过内部的上拉电阻把端口拉到高电平,此时可作输入口。作输入口使用时,因为内部存在上拉电阻,某个引脚被外部信号拉底时会输出一个电流。FLASH编程和程序效验期间,P1接收低8位地址。P2口:P2口是一个带有内部上拉电阻的8位双向I/O口,P2的输出缓冲级可驱动 (吸收或输出电

16、流)4个TTL逻辑们电路。对端口写1,通过内部的上拉电阻把端口拉到高电平,此时可作输入口。作输入口使用时,因为内部存在上拉电阻,某个引脚被外部信号拉底时会输出一个电流。在访问外部程序存储器或16位地址的外部数据存储器(例如执行MOVXDPTR指令)时,P2口送出高8位地址数据。在访问8位地址的外部数据存储器(如执行MOVXRI)时,P2口线上的内容(也即特殊功能寄存器(SFR)区中R2寄存器的内容),在整个访问期间不改变。FLASH编程或效验时,P2亦接收高位地址和其它控制信号。P3口:P3口是一个带有内部上拉电阻的8位双向I/O口,P3的输出缓冲级可驱动 (吸收或输出电流)4个TTL逻辑们电

17、路。对端口写1,通过内部的上拉电阻把端口拉到高电平,此时可作输入口。作输入口使用时,因为内部存在上拉电阻,某个引脚被外部信号拉底时会输出一个电流。P3口除了作为一般的I/O口线外,更重要的用途是他的第二个功能,如下表所示:表1 P3口AT89C51特殊功能端口引脚功能特性P3.0RXD(串行口输入)P3.1TXD(并行口输入)P3.2INT0(外部中断0)P3.3INT1(外部中断1)P3.4T0(定时计数外部输入0)P3.5T1(定时计数外部输入0)P3.6(外部数据存储器写选通)P3.7(外部数据存储器读选通)P3口还接收一些用于FLASH闪速存储器编程和程序效验的控制信号。RST:复位输

18、入。其引脚一旦变成两个机器周期以上的高电平,所有的I/O口都将复位到1状态,当振荡器正在工作时,持续两个机器周期以上高电平便可完成复位,每个机器周期为12个振荡时钟周期。EA/VPP:外部访问允许,欲使CPU仅访问外部程序存储器(0000HFFFFH),EA端必须保持低电平接地,需注意的是:如果加密位LB1被编程,复位是内部会锁存EA端状态。如EA端为高电平(接VCC端),CPU则执行内部程序存储器中的指令。FLASH存储器编程时,该引脚加上+12V的编程允许电源VPP,当然这必须是该器件是使用12V编程电压VPP。XTAL1:振荡器反相放大器的及内部时钟发生器的输入端。XTAL2:振荡器反相

19、放大器输出端(2)时钟振荡器AT89C51中有一个用于构成内部振荡器的高增益反向放大器,引脚XTAL1和 XTAL2分别是该放大器的输入端和输出端。这个放大器与作为反馈器件的片外石英晶体或陶瓷谐振器一起构成自激振荡器,振荡电路参见图2.2。外接石英晶体或陶瓷振荡器及电容 C1,C2接在放大器的反馈回路中构成并联振荡电路。对外接电容 C1,C2虽然没有十分严格的要求,但电容容量的大小会轻微影响振荡频率的高低,振荡器工作的稳定性,起振得难易程度及温度稳定性,如果使用石英晶体,推荐电容使用30PF10PF,而如使用陶瓷振荡器建议选择40PF10PF。 图 2.2 时钟振荡电路(3)复位电路计算机在启

20、动运行是都需要复位,使中央处理器CPU和系统中的其它部件都处于一个确定的初始状态,并从这个状态开始工作。MCS-51的复位输入引脚RST为MCS-51提供了初始化的手段,可以使程序从指定处开始执行,在MCS-51的时钟电路工作后,只要RST引脚上出现超过两个机器周期以上的高电平时,即可产生复位的操作。只要 RST保持高电平,则MCS-51循环复位。只有当RST由高电平变低电平以后,MCS-51才从0000H地址开始执行程序。本系统采用按键复位方式的复位电路。MCS-51单片机有一个复位引脚RST,它是施密特触发输入,当振荡器起振后,该引脚上出现2个机器周期(即24个时钟周期)以上的高电平。使器

21、件复位,只要RST保持高电平,MCS-51保持复位状态。此时ALE、/PSEN、P0、P1、P2、P3口都输出高电平。RST变为低电平后,退出复位,CPU从初始状态开始工作。复位以后内部寄存器的初始状态为(SP=07,P0、P1、P2、P3为0FFH外,其它寄存器都为0。在RST复位端接一个电容至VccHE 一个电阻至Vss,就能实现上电自动复位,对于CMOS单片机只要接一个电容至Vcc即可。如图,在加电瞬间,电容通过电阻充电,就在RST端出现一定时间的高电平,只要高电平时间足够长,就可以使MCS-51有效地复位。RST端在加电时应保持的高电平时间包括Vcc的上升时间和振荡器起振时间,Vcc上

22、升时间若为10ms,振荡器起振时间和频率有关。10MHz时间约为1ms,1MHz时约为10ms,所以一般为了可靠地复位,RST在上电时应保持20ms以上的高电平。图2.5中,RC时间常数越大,上电时RST端保持高电平的时间越长。当振荡频率为12MHZ时,典型值为C=10uF,R=8.2k. 图2-3上电复位电路(4)人工复位除上电自动复位以外,常常需要人工复位,将一个按钮开关并联于上电自动复位电路,按一下开关就RST端出现一段时间的高电平,即使器件复位。如图所示图2-4上电和开关复位而我们在这次的毕业设计中运用的人工复位电路. 其中电平复位是通过RST端经电阻和电源Vcc接通而实现的,按键手动

23、电平复位电路如图。当时钟频率选用12MHz时,C选取10uF,R选择1000欧。(5)上拉电阻的作用P0口没有上拉电阻,故作为普通IO口用的时候,须加上拉电阻。P2口内部存在上拉电阻,但因为其用作矩阵键盘,为了得到较高的可靠性,故将其也再加上外部上拉。一般上拉电阻取值为1K-10K。阻值越小,能提供的上拉 能力也越强,但功耗也会随之上升。晶体震荡器电路如图2-5所示,图2-5晶体震荡器电路图(6)振荡器特性XTAL1和XTAL2分别为反向放大器的输入和输出。该反向放大器可以配置为片内振荡器。石晶振荡和陶瓷振荡均可采用。如采用外部时钟源驱动器件,XTAL2应不接。有余输入至内部时钟信号要通过一个

24、二分频触发器,因此对外部时钟信号的脉宽无任何要求,但必须保证脉冲的高低电平要求的宽度。(7)芯片擦除整个PEROM阵列和三个锁定位的电擦除可通过正确的控制信号组合,并保持ALE管脚处于低电平10ms 来完成。在芯片擦操作中,代码阵列全被写“1”且在任何非空存储字节被重复编程以前,该操作必须被执行。此外,AT89C52设有稳态逻辑,可以在低到零频率的条件下静态逻辑,支持两种软件可选的掉电模式。在闲置模式下,CPU停止工作。但RAM,定时器,计数器,串口和中断系统仍在工作。在掉电模式下,保存RAM的内容并且冻结振荡器,禁止所用其他芯片功能,直到下一个硬件复位为止。因此在本次设计中用AT89C52来

25、作为该系统的核心处理芯片。如图2-6:AT89C52P3.4-P3.7接电机驱动电路P1.0-p1.7接数码管段选端EA接+5vReset接复位电路X1,X2接晶振电路P2.0-p2.3接键盘控制电路P2.6,P2.7接数码管位选端图2-6AT89C52外围电路图(8)电源部分 因为电路中的AT89C52单片机的工作电压是+5V,而步进电机的工作电压是+12V ,根据稳压电源的设计要求及其技术指标,结合本系统的功率要求及安装方便实用,本实验用电容整流滤波再经集成稳压管7805/7812后得到直流 +5V和+12V电压。提供给AT89C52芯片、步进电机及其他外围电路。其硬件电路如下示:图2-7

26、 输出+5V电压图2-8 输出+12V电压22步进电机2.2.1步进电机的分类步进电机是将电脉冲信号转变为角位移或线位移的开环控制元件。在非超载的情况下,电机的转速、停止的位置只取决于脉冲信号的频率和脉冲数,而不受负载变化的影响,即给电机加一个脉冲信号,电机则转过一个步距角。这一线性关系的存在,加上步进电机只有周期性的误差而无累积误差等特点。使得在速度、位置等控制领域用步进电机来控制变的非常的简单。正常情况下,步进电机转过的总角度和输入的脉冲数成正比;连续输入一定频率的脉冲时,电动机的转速与输入脉冲的频率保持严格的对应关系,不受电压波动和负载变化的影响。由于步进电动机能直接接收数字量的输入,所

27、以特别适合于微机控制。1.步进电机依其构造上的差异可分为三大类:(1)反应式步进电机(Variable Reluctance,简称VR)反应式步进电机的转子是由软磁材料制成的,转子中没有绕组。它的结构简单,成本低,步距角可以做得很小,但动态性能较差。反应式步进电机有单段式和多段式两种类型;(2)永磁式步进电机(Permanent Magnet,简称PM)永磁式步进电机的转子是用永磁材料制成的,转子本身就是一个磁源。转子的极数和定子的极数相同,所以一般步距角比较大。它输出转矩大,动态性能好,消耗功率小(相比反应式),但启动运行频率较低,还需要正负脉冲供电;(3)混合式步进电机(Hybrid,简称

28、HB)混合式步进电机综合了反应式和永 磁式两者的优点。混合式与传统的反应式相比,结构上转子加有永磁体,以提供软磁材料的工作点,而定子激磁只需提供变化的磁场而不必提供磁材料工作点的耗能,因此该电机效率高,电流小,发热低。 图2-9 目前市场上所使用的工业用步进电机,以混和式(HB型)最为普遍。 2.2.2 步进电机概述1.步进电机的基本参数: (一)步进电机的静态指标术语1、相数:产生不同对N、S磁场的激磁线圈对数。常用m表示。2、拍数:完成一个磁场周期性变化所需脉冲数或导电状态用n表示,或指电机转过一个齿距角所需脉冲数,以四相电机为例,有四相四拍运行方式即AB-BC-CD-DA-AB,四相八拍

29、运行方式即A-AB-B-BC-C-CD-D-DA-A.3、步距角:对应一个脉冲信号,电机转子转过的角位移用表示。=360度(转子齿数*运行拍数),以常规二、四相,转子齿为50齿电机为例。四拍运行时步距角为=360度/(50*4)=1.8度(俗称整步),八拍运行时步距角为=360度/(50*8)=0.9度(俗称半步)。4、定位转矩:电机在不通电状态下,电机转子自身的锁定力矩(由磁场齿形的谐波以及机械误差造成的)5、静转矩:电机在额定静态电作用下,电机不作旋转运动时,电机转轴的锁定力矩。此力矩是衡量电机体积(几何尺寸)的标准,与驱动电压及驱动电源等无关。虽然静转矩与电磁激磁安匝数成正比,与定齿转子

30、间的气隙有关,但过份采用减小气隙,增加激磁安匝来提高静力矩是不可取的,这样会造成电机的发热及机械噪音。(二)步进电机动态指标及术语: 1、步距角精度:步进电机每转过一个步距角的实际值与理论值的误差。用百分比表示:误差/步距角*100%。不同运行拍数其值不同,四拍运行时应在5%之内,八拍运行时应在15%以内。2、失步:电机运转时运转的步数,不等于理论上的步数。称之为失步3、失调角:转子齿轴线偏移定子齿轴线的角度,电机运转必存在失调角,由失调角产生的误差,采用细分驱动是不能解决的。4、最大空载起动频率:电机在某种驱动形式、电压及额定电流下,在不加负载的情况下,能够直接起动的最大频率。5、最大空载的

31、运行频率:电机在某种驱动形式,电压及额定电流下,电机不带负载的最高转速频率。6、运行矩频特性:电机在某种测试条件下测得运行中输出力矩与频率关系的曲线称为运行矩频特性,这是电机诸多动态曲线中最重要的,也是电机选择的根本依据。电机一旦选定,电机的静力矩确定,而动态力矩却不然,电机的动态力矩取决于电机运行时的平均电流(而非静态电流),平均电流越大,电机输出力矩越大,即电机的频率特性越硬。要使平均电流大,尽可能提高驱动电压,使采用小电感大电流的电机。7、电机的共振点:步进电机均有固定的共振区域,二、四相感应子式步进电机的共振区一般在180-250pps之间(步距角1.8度)或在400pps左右(步距角

32、为0.9度),电机驱动电压越高,电机电流越大,负载越轻,电机体积越小,则共振区向上偏移,反之亦然,为使电机输出电矩大,不失步和整个系统的噪音降低,一般工作点均应偏移共振区较多。8、电机正反转控制:当电机绕组通电时序为A-AB-B-BC-C-CD-D-DA时为正转,通电时序为DA-D-CD-C-BC-B-AB-A时为反转。2.步进电机的特征如下: 1、一般步进电机的精度为步进角的3%-5%,且不积累。 2、步进电机外表允许的最高温度。 步进电机温度过高首先会使电机的磁性材料退磁,从而导致力矩下降乃至于失步,因此电机外表允许的最高温度应取决于不同电机磁性材料的退磁点;一般来讲,磁性材料的退磁点都在

33、摄氏130度以上,有的甚至高达摄氏200度以上,所以步进电机外表温度在摄氏80-90度完全正常。3、步进电机的力矩会随转速的升高而下降。当步进电机转动时,电机各相绕组的电感将形成一个反向电动势;频率越高,反向电动势越大。在它的作用下,电机随频率(或速度)的增大而相电流减少,从而导致力矩下降。4、步进电机低速时可以正常转动,但若高于一定速度就无法启动,并伴有啸叫声。步进电机有一个技术参数:空载启动频率,即步进电机在空载情况下能够正常启动的脉冲频率,如果脉冲频率高于该值,电机不能正常启动,可能发生丢步或堵转。在有负载的情况下,启动频率应更低。如果要使电机达到高速转动,脉冲频率应该有加速过程,即启动

34、频率较低,然后按一定加速度升到所希望的高频(电机转速从低速升到高速)。步进电动机以其显著的特点,在数字化制造时代发挥着重大的用途。伴随着不同数字化技术的发展以及步进电机本身技术的提高,步进电机将会在更多的领域得到应用2.2.3电机的工作原理1.步进电机原理 步进电机本质上是一个数字角度转换器。以三相电机为例, 其结构原理见图1。各相夹角为120的定子磁极上均匀分布了5个矩形小齿, 没有绕组的转子圆周上也均匀的分布着40个小齿(相邻齿夹角为9)。利用电磁学的性质, 在某相绕组通电时, 相应的磁极产生磁场, 与转子形成磁路如此时定子的小齿与转子的小齿没有对齐, 则在磁场作用下, 转子就转动一定角度

35、, 达到齿的对齐。在单三拍控制方式下, 若A相通电, B、C相不通电, 在磁场作用下使转子齿和A相定子齿相对假设此时为初态并且令与A相中心对齐的转子齿为0号齿, 因为B相与A相相差120,可知120/9=13 39, 不为整数, 即此时转子齿与B相不对齐, 只是13号齿靠近相的中心, 且相差3。如果此时突然变为B相通电, 而A、C相都不通电, 那么, 13号齿会在磁场的作用下转到与相中心对齐的位置, 这就是常说的走一步, 此时,转子转了。这样, 按照A一B一C一A顺序通电次, 可以使转子转动9。那么步进电机的步距角Q=(360/NZ)(式中N=MC为运行拍数;M为控制绕组相数;C为状态系数,

36、单三拍或双三拍时C=1, 单六拍或双六拍时C=2为转子齿数)。2直流电机的原理由直流电动机和发电机工作原理示意图可以看到,直流电机的结构应由定子和转子两大部分组成。直流电机运行时静止不动的部分称为定子,定子的主要作用是产生磁场,由机座、主磁极、换向极、端盖、轴承和电刷装置等组成。运行时转动的部分称为转子,其主要作用是产生电磁转矩和感应电动势,是直流电机进行能量转换的枢纽,所以通常又称为电枢,由转轴、电枢铁心、电枢绕组、换向器和风扇等组成。直流电机的结构:电机要实现机电能量变换,电路和磁路之间必须有相对运动。所以旋转电机具备静止的和旋转的两大部分。静止和旋转部分之间有一定大小的间隙,称为气隙。静

37、止的部分称为定子,作用是产生磁场和作为电机的机械支撑。包括主磁极、换向极、机座、端盖、轴承、电刷装置等。旋转部分称为转子或电枢,作用是感应电势实现能量转换。包括电枢铁心,电枢绕组,换向器、轴和风扇等。定子部分:1、主磁极:也称为主极。作用是产生气隙磁场。2、换向极:也称为附加极或间极。作用是改善换向。装在主极之间。3、机座:由铸钢或厚钢板焊成。是电机的机械支撑。4、电刷装置:将直流电压、电流引入或引出的装置。其组数与主极极数相等。转动部分:(转子部分)1、电枢铁心:主磁路的主要部分及嵌放电枢绕组,由硅钢片迭压而成。2、电枢绕组:由许多按一定规律联接的线圈组成。用来感应电势和通过电流,是电路的主

38、要部分。3、换向器:由许多彼此绝缘的换向片构成。3步进电机的特征: (1)高精度的定位: 步进电机最大特征即是能够简单的做到高精度的定位控制。以5相步进电机为例:其定位基本单位(分辨率)为0.72(全步级)/0.36(半步级),是非常小的;停止定位精度误差皆在3分(0.05)以内,且无累计误差,故可达到高精度的定位控制。(步进电机的定位精度是取决于电机本身的机械加工精度)(2)位置及速度控制: 步进电机在输入脉冲信号时,可以依输入的脉冲数做固定角度的回转进而得到灵活的角度控制(位置控制),并可得到与该脉冲信号周波数(频率)成比例的回转速度。(3)具定位保持力: 步进电机在停止状态下(无脉波信号

39、输入时),仍具有激磁保持力,故即使不依靠机械式的剎车,也能做到停止位置的保持。(4)动作灵敏: 步进电机因为加速性能优越,所以可做到瞬时起动、停止、正反转之快速、频繁的定位动作。(5)开回路控制、不必依赖传感器定位: 步进电机的控制系统构成简单,不需要速度感应器(ENCODER、转速发电机)及位置传感器(SENSOR),就能以输入的脉波做速度及位置的控制。也因其属开回路控制,故最适合于短距离、高频度、高精度之定位控制的场合下使用。(6)中低速时具备高转矩: 步进电机在中低速时具有较大的转矩,故能够较同级伺服电机提供更大的扭力输出。(7)高信赖性: 使用步进电机装置与使用离合器、减速机及极限开关

40、等其它装置相较,步进电机的故障及误动作少,所以在检查及保养时也较简单容易。(8)小型、高功率: 步进电机体积小、扭力大,尽管于狭窄的空间内,仍可顺利做安装,并提供高转矩输出。 (9)步进电机的速度转矩特性 速度-转矩特性取决于电机及驱动器,尤其与所搭配的驱动器有着极大的影响;使用的驱动器不同,特性上的差异也就会有明显的不同。 图2-10 4.步进电机速度-转矩特性曲线图(图2-10)说明: (1)激磁最大静止转矩:当运转脉冲速度等于0 Hz时,曲线与Y轴交接的点即称为激磁最大静止转矩。也就是指电机在通电但无输入脉冲信号的情况下,其所具备的保持转矩即称为激磁最大静止转矩。 (2)脱出转矩:又称最

41、大转矩,为电机于运转时所能带动的最大负荷。 (3)最大响应频率:在无负载、负荷惯性为0时,电机所能够响应之最快的速度。 4)最大自起动频率:电机在无载的状态下可以做到瞬时的起动而不失步的速度谓之最大自起动频率。2.3数码管显示电路设计 本设计的显示部分可以用液晶显示的方案可供选择,液晶显示和数码管显示的区别主要体现在以下几个方面:数码管显示内容单一,而液晶显示器显示内容丰富,因为液晶一般都是七段八字的只能显示单一的内容,而液晶显示的内容就很丰富;数码管还比液晶显示耗电,而且使用液晶也比使用数码管显得美观。但是控制液晶显示器的时候占用的系统资源多,编程更复杂,最关键的是液晶显示的成本是数码管的几

42、十倍,所以考虑到应用价值,最终还是确定选用数码管实现本设计的显示部分功能。2.3.1共阳数码管简介四位共阳数码管的管脚分配如下图2-11所示:图2-11四位共阳数码管管脚定义数码管的管脚排列:从数码管的正面观看,左下角的那个脚为1脚,从1脚开始,按照逆时针方向排列依次是1脚到12脚,其中12、9、8、6为公共角,为位选信号输入端。剩余的八个脚是段选信号输入端,其对应方式是A-11、B-7、C-4、D-2、E-1、F-10、G-5、DP-3。只有详细的了解了数码管的管脚定义,以及段选位选情况,我们才能通过编程对其正常的显示进行很好的控制。在本设计当中采用了数码管动态扫描的方式进行显示,下面我们对

43、数码管动态扫描显示作一详细介绍。数码管动态显示介面是单片机中应用最为广泛的一种显示方式之一,动态驱动是将所有数码管的8个显示笔划a,b,c,d,e,f,g,dp 的同名端连在一起,另外为每个数码管的公共极COM增加位元选通控制电路,位元选通由各自独立的I/O线控制,当单片机输出字形码时,所有数码管都接收到相同的字形码,但究竟是那个数码管会显示出字形,取决于单片机对位元选通COM端电路的控制,所以我们只要将需要显示的数码管的选通控制打开,该位元就显示出字形,没有选通的数码管就不会亮。通过分时轮流控制各个LED数码管的COM端,就使各个数码管轮流受控显示,这就是动态驱动。在轮流显示过程中,每位元数

44、码管的点亮时间为12ms,由于人的视觉暂留现象及发光二极体的余辉效应,尽管实际上各位数码管并非同时点亮,但只要扫描的速度足够快,给人的印象就是一组稳定的显示资料,不会有闪烁感,动态显示的效果和静态显示是一样的,能够节省大量的I/O口,而且功耗更低。2.3.2共阳数码管电路图本设计选用了数码管显示设计,其段选的控制A、B、C、D、E、F、G、DP按照数码管的简介资料选用了P 0口作为其控制端口,其位选部分由于单片机的控制端口输出的电压不足以直接点亮数码管,所以在单片机控制端口和数码管的位选控制端口加入了三极管,其具体的电路连接如图2-12所示。图2-12 数码管显示电路2.4键盘控制电路键盘在单片机应用系统中能实现向单片机输入数据、传送命令等功能,是人工干预单片机的主要手段。键盘实质是一组按键开关的集合。键盘所用开关为机械弹性开关,利用了机械触点的合、断作用。一个电压信号在机械触点的断开、闭合过程中,都会产生抖动,一般为510ms;两次抖动之间为稳定的闭合状态,时间由按键动作所决定;第一次抖动前和第二次抖动后为断开状态。按键的闭合与否,反映在输出电压上就是呈现出高电平或低电平。通过对输出电平的高低

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 办公文档 > 其他范文


备案号:宁ICP备20000045号-2

经营许可证:宁B2-20210002

宁公网安备 64010402000987号