毕业设计(论文)基于串行通信的压力仪表数据处理研究.doc

上传人:仙人指路1688 文档编号:3980138 上传时间:2023-03-30 格式:DOC 页数:24 大小:193.50KB
返回 下载 相关 举报
毕业设计(论文)基于串行通信的压力仪表数据处理研究.doc_第1页
第1页 / 共24页
毕业设计(论文)基于串行通信的压力仪表数据处理研究.doc_第2页
第2页 / 共24页
毕业设计(论文)基于串行通信的压力仪表数据处理研究.doc_第3页
第3页 / 共24页
毕业设计(论文)基于串行通信的压力仪表数据处理研究.doc_第4页
第4页 / 共24页
毕业设计(论文)基于串行通信的压力仪表数据处理研究.doc_第5页
第5页 / 共24页
点击查看更多>>
资源描述

《毕业设计(论文)基于串行通信的压力仪表数据处理研究.doc》由会员分享,可在线阅读,更多相关《毕业设计(论文)基于串行通信的压力仪表数据处理研究.doc(24页珍藏版)》请在三一办公上搜索。

1、 中 南 大 学本科生毕业论文(设计)调研报告 题 目 基于串行通信的压力仪表数据处理研究学生姓名_ _ _ _指导教师_ _ 学 院_ 信息科学与工程学院 专业班级_ _ 通信0402 _内容摘要本毕业设计的题目是:基于串行通信的压力仪表数据处理研究。该研究的目的就是通过程序对压力仪表数据处理中的一些数据进行分析处理并实现打印功能,编制仪表与计算机通过串口交换数据的程序,为工业生产提高效率。要求使用一种面向对象程序语言编程,例如VC+,动态获取压力仪表数据,将数据进行处理和分类,同时接收人工输入的部分数据,进行统计、存储和表格生成,完成表格输出功能。通过模拟压力仪表数据来检测程序。关键词:串

2、行通信, VC+,压力传感器。目录前言1第一章 VC语言介绍和优势21.1 VC简介21.2 VC的优势2第二章 压力仪表技术介绍32.1 压力传感器的发展与应用32.2 压力传感器的原理42.3 压力传感器的特性及分类5第三章 串行技术介绍83.1串行通信的概念83.2物理接口标准93.3.串行通信协议11第四章 课题初步设计思路164.1 课题初步设计思路164.2系统流程简图164.3拟采取的研究方法,步骤,可能出现的技术问题及解决办法174.4完成该课题研究已具备的条件18结论19参考文献20 前言大学四年,转眼即逝。在这四年里有收获也有遗憾,尤属学业上抱憾颇多。眼看毕业在即,大学所修

3、课程均已结束,所以毕业设计理所当然成了现阶段最重要的任务。当然我们不能忘记毕业设计的本质是培养学生的一个综合能力的教学环节,也是检验一个学生大学里所学知识及其应用这些知识的能力的程度,所以必须给予毕业设计高度的重视,拿出足够的热情来认真完成这项任务。毕业设计的目的在于培养学生全面综合运用所学基础理论知识和基本技能去分析和解决本专业范围内的一般工程技术问题的能力,培养学生建立正确的设计思想,掌握工程设计的一般程序、规范和方法,使学生获得工程师的基本培训。毕业设计的调研是毕业生在做毕业设计过程中一个最基本、不可或缺的重要过程。学生在该过程中应该结合选题进行文献资料的检索和查询,收集与毕业设计课题相

4、关的数据、图表等资料,了解国内外有关技术及其发展趋势;调查了解与课题有关的软、硬件开发的全部过程及所有技术;调查了解与毕业设计课题相关的环节中存在的问题与不足之处,解决这些问题的初步思路等等。实习调研部分主要是培养学生正确的设计思想、严肃认真的工作态度、深入细致的调查方法、主动和创造性地进行学习和工作。第一章 VC语言介绍和优势1.1 VC简介VC是由美国microsoft公司推出的计算机软件,经过多年的逐步发展与不断完善,现已成为国际公认的最优秀的程序开发与工业开发的应用软件之一,是近几年来在国内外广泛流行的一种多行业开发软件。它集各种强大的功能于一体,是一套高效率的可视化编程软件。1.2

5、VC的优势 VC基于C,C+语言,主要由是MFC组成,是与系统联系非常紧密的编程工具,它兼有高级,和低级语言的双重性,功能强大,灵活,执行效率高,几乎可说VC在Windows平台无所不能。 最大缺点是开发效率不高。 VC适用范围1、 VC主要是针对Windows系统,适合一些系统级的开发,可以方便实现一些底层的调用。在VC里边嵌入汇编语言很简单。2、 VC主要用在驱动程序开发3、 VC执行效率高,当对系统性能要求很高的时候,可用VC开发。4、 VC主要适用于游戏开发5、 VC多用于单片机,工业控制等软件开发,如直接对I/O地址操作,就要用C+。6、 VC适用开发高效,短小,轻量级的COM组件,

6、DLL。比如WEB上的控件。7、 VC可以开发优秀的基于通信的程序。8、 VC可以开发高效灵活的文件操作程序。9、 VC可以开发灵活高效的数据库操作程序。10、 VC是编CAD软件的唯一选择!包括AUTOCAD,UG的二次开发。11、VC在多线程、网络通信、分布应用方面,VC+有不可比拟的优势.第二章 压力仪表技术介绍2.1 压力传感器的发展与应用 1643年,意大利人托里拆利首先测定标准的大气压力值为760毫米汞柱,奠定了液柱式压力测量仪表的基础。1847年,法国人波登制成波登管压力表,由于结构简单、实用,很快在工业中获得广泛应用,一直是常用的压力测量仪表。二十世纪上半叶出现了远传压力表和电

7、接点压力表,从而解决了压力测量值的远距离传送和压力的报警、控制等问题。60年代以后,为适应工业控制、航空工业和医学测试等方面的要求,压力测量仪表日益向体积轻巧、耐高温、耐冲击、耐振动和数字显示等方向发展。压力是工业生产中的重要参数,如高压容器的压力超过额定值时便是不安全的,必须进行测量和控制。在某些工业生产过程中,压力还直接影响产品的质量和生产效率,如生产合成氨时,氮和氢不仅须在一定的压力下合成,而且压力的大小直接影响产量高低。此外,在一定的条件下,测量压力还可间接得出温度、流量和液位等参数。压力传感器是工业实践中最为常用的一种传感器,其广泛应用于各种工业自控环境,涉及水利水电、铁路交通、智能

8、建筑、生产自控、航空航天、军工、石化、油井、电力、船舶、机床、管道等众多行业。而我们通常使用的压力传感器主要是利用压电效应制造而成的,这样的传感器也称为压电传感器。压电传感器主要应用在加速度、压力和力等的测量中。压电式加速度传感器是一种常用的加速度计。它具有结构简单、体积小、重量轻、使用寿命长等优异的特点。压电式加速度传感器在飞机、汽车、船舶、桥梁和建筑的振动和冲击测量中已经得到了广泛的应用,特别是航空和宇航领域中更有它的特殊地位。压电式传感器也可以用来测量发动机内部燃烧压力的测量与真空度的测量。也可以用于军事工业及生物医学测量领域。它既可以用来测量大的压力,也可以用来测量微小的压力,应用非常

9、广泛。2.2 压力传感器的原理压力传感器是工业实践中最为常用的一种传感器。我们知道,晶体是各向异性的,非晶体是各向同性的。某些晶体介质,当沿着一定方向受到机械力作用发生变形时,就产生了极化效应;当机械力撤掉之后,又会重新回到不带电的状态,也就是受到压力的时候,某些晶体可能产生出电的效应,这就是所谓的极化效应。科学家就是根据这个效应研制出了压力传感器。 我们通常使用的压力传感器主要是利用压电效应制造而成的,这样的传感器也称为压电传感器。下面仅以压电传感器为例。压电传感器中主要使用的压电材料包括有石英、酒石酸钾钠和磷酸二氢胺。其中石英(二氧化硅)是一种天然晶体,压电效应就是在这种晶体中发现的,在一

10、定的温度范 围之内,压电性质一直存在,但温度超过这个范围之后,压电性质完全消失(这个高温就是所谓的 “居里点 ” )。由于随着应力的变化电场变化微小(也就说压电系数比较低),所以石英逐渐被其他的压电晶体所替代。而酒石酸钾钠具有很大的压电灵敏度和压电系数,但是它只能在室温和湿度比较低的环境下才能够应用。磷酸二氢胺属于人造晶体,能够承受高温和相当高的湿度,所以已经得到了广泛的应用。压电效应是压电传感器的主要工作原理,压电传感器不能用于静态测量,因为经过外力作用后的电荷,只有在回路具有无限大的输入阻抗时才得到保存。实际的情况不是这样的,所以这决定了压电传感器只能够测量动态的应力。压电传感器主要应用在

11、加速度、压力和力等的测量中。压电式加速度传感器是一种常用的加速度计。它具有结构简单、体积小、重量轻、使用寿命长等优异的特点。压电式加速度传感器在飞机、汽车、船舶、桥梁和建筑的振动和冲击测量中已经得到了广泛的应用,特别是航空和宇航领域中更有它的特殊地位。压电式传感器也可以用来测量发动机内部燃烧压力的测量与真空度的测量。也可以用于军事工业,例如用它来测量枪炮子弹在膛中击发的一瞬间的膛压的变化和炮口的冲击波压力。它既可以用来测量大的压力,也可以用来测量微小的压力。压电式传感器也广泛应用在生物医学测量中,比如说心室导管式微音器就是由压电 传感器制成的,因为测量动态压力是如此普遍,所以压电传感器的应用就

12、非常广泛。 除了压电传感器之外,还有利用压阻效应制造出来的压阻传感器,利用应变效应的应变 式传感器等,这些不同的压力传感器利用不同的效应和不同的材料,在不同的场合能够 发挥它们独特的用途。2.3 压力传感器的特性及分类(1)传感器的静(动)态特性传感器的静态特性传感器的静态特性是指对静态的输入信号,传感器的输出量与输入量之间所具有相互关系。因为这时输入量和输出量都和时间无关,所以它们之间的关系,即传感器的静态特性可用一个不含时间变量的代数方程,或以输入量作横坐标,把与其对应的输出量作纵坐标而画出的特性曲线来描述。表征传感器静态特性的主要参数有:线性度、灵敏度、分辨力和迟滞等。 传感器的动态特性

13、 所谓动态特性,是指传感器在输入变化时,它的输出的特性。在实际工作中,传感器的动态特性常用它对某些标准输入信号的响应来表示。这是因为传感器对标准输入信号的响应容易用实验方法求得,并且它对标准输入信号的响应与它对任意输入信号的响应之间存在一定的关系,往往知道了前者就能推定后者。最常用的标准输入信号有阶跃信号和正弦信号两种,所以传感器的动态特性也常用阶跃响应和频率响应来表示。传感器的线性度 通常情况下,传感器的实际静态特性输出是条曲线而非直线。在实际工作中,为使仪表具有均匀刻度的读数,常用一条拟合直线近似地代表实际的特性曲线、线性度(非线性误差)就是这个近似程度的一个性能指标。拟合直线的选取有多种

14、方法。如将零输入和满量程输出点相连的理论直线作为拟合直线;或将与特性曲线上各点偏差的平方和为最小的理论直线作为拟合直线,此拟合直线称为最小二乘法拟合直线。 传感器的灵敏度 灵敏度是指传感器在稳态工作情况下输出量变化 y 对输入量变化 x 的比值。它是输出一输入特性曲线的斜率。如果传感器的输出和输入之间显线性关系,则灵敏度 S 是一个常数。否则,它将随输入量的变化而变化。 灵敏度的量纲是输出、输入量的量纲之比。例如,某位移传感器,在位移变化 1mm 时,输出电压变化为 200mV ,则其灵敏度应表示为 200mV/mm 。当传感器的输出、输入量的量纲相同时,灵敏度可理解为放大倍数。 提高灵敏度,

15、可得到较高的测量精度。但灵敏度愈高,测量范围愈窄,稳定性也往往愈差。传感器的分辨力 分辨力是指传感器可能感受到的被测量的最小变化的能力。也就是说,如果输入量从某一非零值缓慢地变化。当输入变化值未超过某一数值时,传感器的输出不会发生变化,即传感器对此输入量的变化是分辨不出来的。只有当输入量的变化超过分辨力时,其输出才会发生变化。 通常传感器在满量程范围内各点的分辨力并不相同,因此常用满量程中能使输出量产生阶跃变化的输入量中的最大变化值作为衡量分辨力的指标。上述指标若用满量程的百分比表示,则称为分辨率。传感器的迟滞特性 迟滞特性表征传感器在正向(输入量增大)和反向(输入量减小)行程间输出 - 一输

16、入特性曲线不一致的程度,通常用这两条曲线之间的最大差值 MAX 与满量程输出 FS的百分比表示,迟滞可由传感器内部元件存在能量的吸收造成。(2)压力测量仪表分类按工作原理分为液柱式、弹性式、负荷式和电测式等类型。液压式压力测量仪表常称为液柱式压力计,它是以一定高度的液柱所产生的压力,与被测压力相平衡的原理测量压力的。大多是一根直的或弯成 U形的玻璃管,其中充以工作液体。常用的工作液体为蒸馏水、水银和酒精。因玻璃管强度不高,并受读数限制,因此所测压力一般不超过0.3兆帕。它的特点是。液柱式压力计灵敏度高,因此主要用作实验室中的低压基准仪表,以校验工作用压力测量仪表。由于工作液体的重度在环境温度、

17、重力加速度改变时会发生变化,对测量的结果常需要进行温度和重力加速度等方面的修正。弹性式压力测量仪表是利用各种不同形状的弹性元件,在压力下产生变形的原理制成的压力测量仪表。弹性式压力测量仪表按采用的弹性元件不同,可分为弹簧管压力表、膜片压力表、膜盒压力表和波纹管压力表等;按功能不同分为指示式压力表、电接点压力表和远传压力表等。这类仪表的特点是结构简单,结实耐用,测量范围宽,是压力测量仪表中应用最多的一种。负荷式压力测量仪表常称为负荷式压力计,它是直接按压力的定义制作的,常见的有活塞式压力计、浮球式压力计和钟罩式压力计。由于活塞和砝码均可精确加工和测量,因此这类压力计的误差很小,主要作为压力基准仪

18、表使用,测量范围从数十帕至2500兆帕。电测式压力测量仪表是利用金属或半导体的物理特性,直接将压力转换为电压、电流信号或频率信号输出,或是通过电阻应变片等,将弹性体的形变转换为电压、电流信号输出。代表性产品有压电式、压阻式、振频式、电容式和应变式等压力传感器所构成的电测式压力测量仪表。精确度可达0.02级,测量范围从数十帕至700兆帕不等。压阻式压力传感器是利用半导体材料硅在受压后,电阻率改变与所受压力有一定关系的原理制做的。用集成电路工艺在单晶硅膜片的特定晶向上扩散一组等值应变电阻,将电阻接成电桥形式。当压力发生变化时,单晶硅产生应变,应变使电阻值发生与被测压力成比例的变化,电桥失去平衡,输

19、出一电压信号至显示仪表显示。 第三章 串行技术介绍3.1串行通信的概念图3-1所谓“串行通信”是指外设和计算机间使用一根数据信号线(另外需要地线,可能还需要控制线),数据在一根数据信号线上一位一位地进行传输,每一位数据都占据一个固定的时间长度。如图3-1所示。这种通信方式使用的数据线少,在远距离通信中可以节约通信成本,当然,其传输速度比并行传输慢。由于CPU与接口之间按并行方式传输,接口与外设之间按串行方式传输,因此,在串行接口中,必须要有“接收移位寄存器”(串并)和“发送移位寄存器”(并串)。典型的串行接口的结构如3-2所示。图3-2在数据输入过程中,数据1位1位地从外设进入接口的“接收移位

20、寄存器”,当“接收移位寄存器”中已接收完1个字符的各位后,数据就从“接收移位寄存器”进入“数据输入寄存器”。CPU从“数据输入寄存器”中读取接收到的字符。(并行读取,即D7D0同时被读至累加器中)。“接收移位寄存器”的移位速度由“接收时钟”确定。在数据输出过程中,CPU把要输出的字符(并行地)送入“数据输出寄存器”,“数据输出寄存器”的内容传输到“发送移位寄存器”,然后由“发送移位寄存器”移位,把数据1位1位地送到外设。“发送移位寄存器”的移位速度由“发送时钟”确定。接口中的“控制寄存器”用来容纳CPU送给此接口的各种控制信息,这些控制信息决定接口的工作方式。“状态寄存器”的各位称为“状态位”

21、,每一个状态位都可以用来指示数据传输过程中的状态或某种错误。例如,用状态寄存器的D5位为“1”表示“数据输出寄存器”空,用D0位表示“数据输入寄存器满”,用D2位表示“奇偶检验错”等。能够完成上述“串并”转换功能的电路,通常称为“通用异步收发器”(UART:Universal Asynchronous Receiver and Transmitter),典型的芯片有:Intel 8250/8251,16550。3.2物理接口标准1.串行通信接口的基本任务(1)实现数据格式化:因为来自CPU的是普通的并行数据,所以,接口电路应具有实现不同串行通信方式下的数据格式化的任务。在异步通信方式下,接口自

22、动生成起止式的帧数据格式。在面向字符的同步方式下,接口要在待传送的数据块前加上同步字符。(2)进行串并转换:串行传送,数据是一位一位串行传送的,而计算机处理数据是并行数据。所以当数据由计算机送至数据发送器时,首先把串行数据转换为并行数才能送入计算机处理。因此串并转换是串行接口电路的重要任务。(3)控制数据传输速率:串行通信接口电路应具有对数据传输速率波特率进行选择和控制的能力。(4)进行错误检测:在发送时接口电路对传送的字符数据自动生成奇偶校验位或其他校验码。在接收时,接口电路检查字符的奇偶校验或其他校验码,确定是否发生传送错误。(5)进行TTL与EIA电平转换:CPU和终端均采用TTL电平及

23、正逻辑,它们与EIA采用的电平及负逻辑不兼容,需在接口电路中进行转换。(6)提供EIA-RS-232C接口标准所要求的信号线:远距离通信采用MODEM时,需要9根信号线;近距离零MODEM方式,只需要3根信号线。这些信号线由接口电路提供,以便与MODEM或终端进行联络与控制。2、串行通信接口电路的组成为了完成上述串行接口的任务,串行通信接口电路一般由可编程的串行接口芯片、波特率发生器、EIA与TTL电平转换器以及地址译码电路组成。其中,串行接口芯片,随着大规模继承电路技术的发展,通用的同步(USRT)和异步(UART)接口芯片种类越来越多,如下表所示。它们的基本功能是类似的,都能实现上面提出的

24、串行通信接口基本任务的大部分工作,且都是可编程的。才用这些芯片作为串行通信接口电路的核心芯片,会使电路结构比较简单。芯片同步(USRT)异步(UART)(起止式)传输速率b/s面向字符HDLC同步异步INS825056KMC68501MMC68521.5MMC68541.5MInt8251A64K19.2KInt827364KZ-80 SIO800K3.有关串行通信的物理标准为使计算机、电话以及其他通信设备互相沟通,现在,已经对串行通信建立了几个一致的概念和标准,这些概念和标准属于三个方面:传输率,电特性,信号名称和接口标准。1、传输率:所谓传输率就是指每秒传输多少位,传输率也常叫波特率。国际

25、上规定了一个标准波特率系列,标准波特率也是最常用的波特率,标准波特率系列为110、300、600、1200、4800、9600和19200。大多数CRT终端都能够按110到9600范围中的任何一种波特率工作。打印机由于机械速度比较慢而使传输波特率受到限制,所以,一般的串行打印机工作在110波特率,点针式打印机由于其内部有较大的行缓冲区,所以可以按高达2400波特的速度接收打印信息。大多数接口的接收波特率和发送波特率可以分别设置,而且,可以通过编程来指定。2、RS-232-C标准:RS-232-C标准对两个方面作了规定,即信号电平标准和控制信号线的定义。RS-232C采用负逻辑规定逻辑电平,信号

26、电平与通常的TTL电平也不兼容,RS-232-C将-5V-15V规定为“1”,+5V+15V规定为“0”。图3-3是TTL标准和RS-232-C标准之间的电平转换。图3-33.3.串行通信协议所谓通信协议是指通信双方的一种约定。约定包括对数据格式、同步方式、传送速度、传送步骤、检纠错方式以及控制字符定义等问题做出统一规定,通信双方必须共同遵守。因此,也叫做通信控制规程,或称传输控制规程,它属于ISOS OSI七层参考模型中的数据链路层。目前,采用的通信协议有两类:异步协议和同步协议。同步协议又有面向字符和面向比特以及面向字节计数三种。其中,面向字节计数的同步协议主要用于DEC公司的网络体系结构

27、中。(1)异步通信协议的实例起止式异步协议图3-4特点与格式:起止式异步协议的特点是一个字符一个字符传输,并且传送一个字符总是以起始位开始,以停止位结束,字符之间没有固定的时间间隔要求。其格式如图3-4所示。每一个字符的前面都有一位起始位(低电平,逻辑值0),字符本身有57位数据位组成,接着字符后面是一位校验位(也可以没有校验位),最后是一位,或意味半,或二位停止位,停止位后面是不定长度的空闲位。停止位和空闲位都规定为高电平(逻辑值),这样就保证起始位开始处一定有一个下跳沿。从图中可以看出,这种格式是靠起始位和停止位来实现字符的界定或同步的,故称为起始式协议。传送时,数据的低位在前,高位在后,

28、图3-5表示了传送一个字符E的ASCAII码的波形1010001。当把它的最低有效位写到右边时,就是E的ASCII码1000101=45H。图3-5起止位的作用:起始位实际上是作为联络信号附加进来的,当它变为低电平时,告诉收方传送开始。它的到来,表示下面接着是数据位来了,要准备接收。而停止位标志一个字符的结束,它的出现,表示一个字符传送完毕。这样就为通信双方提供了何时开始收发,何时结束的标志。传送开始前,发收双方把所采用的起止式格式(包括字符的数据位长度,停止位位数,有无校验位以及是奇校验还是偶校验等)和数据传输速率作统一规定。传送开始后,接收设备不断地检测传输线,看是否有起始位到来。当收到一

29、系列的“1”(停止位或空闲位)之后,检测到一个下跳沿,说明起始位出现,起始位经确认后,就开始接收所规定的数据位和奇偶校验位以及停止位。经过处理将停止位去掉,把数据位拼装成一个并行字节,并且经校验后,无奇偶错才算正确的接收一个字符。一个字符接收完毕,接收设备有继续测试传输线,监视“0”电平的到来和下一个字符的开始,直到全部数据传送完毕。由上述工作过程可看到,异步通信是按字符传输的,每传输一个字符,就用起始位来通知收方,以此来重新核对收发双方同步。若接收设备和发送设备两者的时钟频率略有偏差,这也不会因偏差的累积而导致错位,加之字符之间的空闲位也为这种偏差提供一种缓冲,所以异步串行通信的可靠性高。但

30、由于要在每个字符的前后加上起始位和停止位这样一些附加位,使得传输效率变低了,只有约80%。因此,起止协议一般用在数据速率较慢的场合(小于19.2kbit/s)。在高速传送时,一般要采用同步协议。(2)面向字符的同步协议特点与格式:这种协议的典型代表是IBM公司的二进制同步通信协议(BSC)。它的特点是一次传送由若干个字符组成的数据块,而不是只传送一个字符,并规定了10个字符作为这个数据块的开头与结束标志以及整个传输过程的控制信息,它们也叫做通信控制字。由于被传送的数据块是由字符组成,故被称作面向字符的协议。特定字符(控制字符)的定义:由上面的格式可以看出,数据块的前后都加了几个特定字符。SYN

31、是同步字符(synchronous Character),每一帧开始处都有SYN,加一个SYN的称单同步,加两个SYN的称双同步设置同步字符是起联络作用,传送数据时,接收端不断检测,一旦出现同步字符,就知道是一帧开始了。接着的SOH是序始字符(Start Of Header),它表示标题的开始。标题中包括院地址、目的地址和路由指示等信息。STX是文始字符(Start Of Text),它标志着传送的正文(数据块)开始。数据块就是被传送的正文内容,由多个字符组成。数据块后面是组终字符ETB(End Of Transmission Block)或文终字符ETX(End Of Text),其中ETB

32、用在正文很长、需要分成若干个分数据块、分别在不同帧中发送的场合,这时在每个分数据块后面用文终字符ETX。一帧的最后是校验码,它对从SOH开始到ETX(或ETB)字段进行校验,校验方式可以是纵横奇偶校验或CRC。另外,在面向字符协议中还采用了一些其他通信控制字,它们的名称如下表所示:名 称ASCIIEBCDIC序始(SOH)000000100000001文始(STX)000001000000010组终(ETB)001011100100110文终(ETX)000001100000011同步(SYN)001011000110010送毕(EOT)000010000110111询问(ENQ)000010

33、100101101确认(ACK)000011000101110否认(NAK)001010100111101转义(DLE)001000000010000数据透明的实现:面向字符的同步协议,不象异步起止协议那样,需要在每个字符前后附加起始和停止位,因此,传输效率提高了。同时,由于采用了一些传输控制字,故增强了通信控制能力和校验功能。但也存在一些问题,例如,如何区别数据字符代码和特定字符代码的问题,因为在数据块中完全有可能出现与特定字符代码相同的数据字符,这就会发生误解。比如正文有个与文终字符ETX的代码相同的数据字符,接收端就不会把它当作为普通数据处理,而误认为是正文结束,因而产生差错。因此,协议

34、应具有将特定字符作为普通数据处理的能力,这种能力叫做“数据透明”。为此,协议中设置了转移字符DLE(Data Link Escape)。当把一个特定字符看成数据时,在它前面要加一个DLE,这样接收器收到一个DLE就可预知下一个字符是数据字符,而不会把它当作控制字符来处理了。DLE本身也是特定字符,当它出现在数据块中时,也要在它前面加上另一个DLE。这种方法叫字符填充。字符填充实现起来相当麻烦,且依赖于字符的编码。正是由于以上的缺点,故又产生了新的面向比特的同步协议。(3)面向比特的同步协议特点与格式:面向比特的协议中最具有代表性的是IBM的同步数据链路控制规程SDLC(Synchronous

35、Data Link Control),国际标准化组织ISO(International Standard Organization)的高级数据链路控制规程HDLC(High Level Data link Control),美国国家标准协会(Americal National Standard Institute)的先进数据通信规程ADCCP(Advanced Data Communication Control Procedure)。这些协议的特点是所传输的一帧数据可以是任意位,而且它是靠约定的位组合模式,而不是靠特定字符来标志帧的开始和结束,故称“面向比特”的协议。这中协议的一般帧格式如图

36、3-6所示:图3-6帧信息的分段:由图3-6可见,SDLC/HDLC的一帧信息包括以下几个场(Filed),所有场都是从有效位开始传送。(1)SDLC/HDLC标志字符:SDLC/HDLC协议规定,所有信息传输必须以一个标志字符开始,且以同一个字符结束。这个标志字符是01111110,称标志场(F)。从开始标志到结束标志之间构成一个完整的信息单位,称为一帧(Frame)。所有的信息是以帧的形传输的,而标志字符提供了每一帧的边界。接收端可以通过搜索“01111110”来探知帧的开头和结束,以此建立帧同步。(2)地址场和控制场:在标志场之后,可以有一个地址场A(Address)和一个控制场C(Co

37、ntrol)。地址场用来规定与之通信的次站的地址。控制场可规定若干个命令。SDLC规定A场和C场的宽度为8位或16位。接收方必须检查每个地址字节的第一位,如果为“0”,则后面跟着另一个地址字节;若为“1”,则该字节就是最后一个地址字节。同理,如果控制场第一个字节的第一位为为“0”,则还有第二个控制场字节,否则就只有一个字节。(3)信息场:跟在控制场之后的是信息场I(Information)。I场包含有要传送的数据,并不是每一帧都必须有信息场。即数据场可以为0,当它为0时,则这一帧主要是控制命令。(4)帧校验信息:紧跟在信息场之后的是两字节的争校验,帧校验场称为FC(Frame Check)场或

38、称为帧校验序列FCS(Frame check Squence)。SDLC/HDLC均采用16位循环冗余校验码CRC(Cyclic Redundancy Code)。除了标志场和自动插入的“0”以外,所有的信息都参加CRC计算。实际应用时的两个技术问题:(1)“0”位插入/删除:如上所述,SDLC/HDLC协议规定以01111110为标志字节,但在信息场中也完全有可能有同一种模式的字符,为了把它与标志区分开来,所以采取了“0”位插入和删除技术。具体作法是发送端在发送所有信息(除标志字节外)时,只要遇到连续5个“1”,就自动插入一个“0”,当接收端在接收数据时(除标志字节)如果连续收到5个“1”,

39、就自动将其后的一个“0”删除是,以恢复信息的原有形式。这种“0”位的插入和删除过程是由硬件自动完成的。(2)SDLC/HDLC异常结束:若在发送过程中出现错误,则SDLC/HDLC协议常用异常结束(Abort)字符,或称为失效序列使本帧作废。在HDLC规程中,7个连续的“1”被作为失效字符,而在SDLC中失效字符是8个连续的“1”。当然在试销序列中不使用“0”位插入/删除技术。SDLC/HDLC协议规定,在一帧之内不允许出现数据间隔。在两帧之间,发送器可以连续输出标志字符序列,也可以输出连续的高电平,它被称为空闲(Idle)信号。第四章 课题初步设计思路4.1 课题初步设计思路本毕业设计的题目

40、是“基于串行通信的压力仪表数据处理研究”,从题目来看,应该把该系统分四大模块:1、数据接收(串口通信)2、 数据处理(存储)3、 交互界面(菜单) 4、表格输出、打印以及曲线显示根据该思路,画出一个系统的基本框图如下:总体系统架构数据接收(串口通信)数据库模块(存储)交互界面表格输出、打印及曲线现实 图4.1 系统框图4.2系统流程简图数据库程序数据接收手工输 入仪表数 据对数据进行分析处理,报表等4.3拟采取的研究方法,步骤,可能出现的技术问题及解决办法(1)调研、收集资料:通过学习了解有关串口处理的知识。(2)理论研究:从理论上对仪表数据和软件开发进行分析,估计会出现的结果。(3)调试程序

41、:通过仪表数据模拟实验,将采集结果与估计的结果进行比较,分析模拟的效果。(4)撰写实验指导书(课件)及毕业设计。在调试程序的过程当中,可能写的程序不正确,撰写的实验指导书不规范,以致不能得到正确的结果,这时,我们可以通过查看资料和书籍来解决,也可以询问指导老师,由指导老师指出错误、更正,以便得到正确的结果,达到老师的要求。4.4完成该课题研究已具备的条件(1) 对串口处理的相关知识有一定的了解。(2) 对VC6.0这个软件也有了一定的基础。(3) 有专门的导师指导。(4) 有电脑等硬件设备,仪器信号采用模拟的方法。结论通过对本设计的相关知识的前期调研,整理学习、了解和掌握了这些知识,对串行通信

42、、VC编程及压力仪表的学习,初步了解了它的工作模式和原理。在以后的程序编辑、具体电路设计和实物连接中,我会将学到的知识运用到其中,并以一种认真的态度去完成毕业设计。但是由于接触时间短,资料准备不全等,设计的系统还有许多值得改进的地方。这些会在以后的学习开发过程中不断的改进并逐步完善。参考文献1、串行技术大全 谢瑞和 清华大学出版社 2003 4. ETSI TS 100 901 V7.3.0 (1999-11)2、Visual C+ 6.0 MFC时尚编程百例 网冠科技 机械工业出版社 2004.05 3、Visual C+ 技术内幕(第四版) 作者: (美)David J.Kruglinski 译者: 潘爱民 清华大学出版社 2001-4-1 原书 Inside Visual C+ 4th Edition 原出版社: Microsoft Press 4、C/C+程序设计入门 北京洪恩教育科技有限公司 天津电子出版社 20025、戴新迪; 刘玉强 MT162在压力温度智能传感器信号处理系统中的应用,黑龙江科技信息 2003 076、刘国汉, 韩根亮, 张建华. 网络化智能传感器. 甘肃科技 , 2003,(09)7、齐宗韶 仪器分析 北京: 化学工业出版社, 2005.88、陈光禹 现代测试技术电子科技大学出版社20029、杨吉祥电子测量技术基础东南大学出版社, 1999

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 办公文档 > 其他范文


备案号:宁ICP备20000045号-2

经营许可证:宁B2-20210002

宁公网安备 64010402000987号