毕业设计(论文)数理统计在风险决策中的应用.doc

上传人:laozhun 文档编号:3982797 上传时间:2023-03-30 格式:DOC 页数:31 大小:775.50KB
返回 下载 相关 举报
毕业设计(论文)数理统计在风险决策中的应用.doc_第1页
第1页 / 共31页
毕业设计(论文)数理统计在风险决策中的应用.doc_第2页
第2页 / 共31页
毕业设计(论文)数理统计在风险决策中的应用.doc_第3页
第3页 / 共31页
毕业设计(论文)数理统计在风险决策中的应用.doc_第4页
第4页 / 共31页
毕业设计(论文)数理统计在风险决策中的应用.doc_第5页
第5页 / 共31页
点击查看更多>>
资源描述

《毕业设计(论文)数理统计在风险决策中的应用.doc》由会员分享,可在线阅读,更多相关《毕业设计(论文)数理统计在风险决策中的应用.doc(31页珍藏版)》请在三一办公上搜索。

1、一原始依据(包括设计或论文的工作基础、研究条件、应用环境、工作目的等。) 1.工作基础:作者已经学习过概率论基础和数理统计,因此具备了研究该课题的前提条件。此外,作者对R软件操作及算法学习了解,作者还拥有查阅文献的能力,也为该课题的研究提供了便利条件。 2.研究条件:在数据模拟方面,作者应用统计软件R;理论方面借鉴于图书馆丰富的馆藏书籍与数据库资源。以上研究条件现均已具备。 3.应用环境:概率论与数理统计在企业管理等方面的应用越来越广泛,在指导人们经济决策等方面也发挥着重大作用。利用概率统计理论可以提高企业的经济效益。在实际经营中。许多量之间存在某中密切联系,根据数理统计原理,可以根据往年资料

2、或市场信息,通过对社会经济现象之间客观存在的因果关系及其变化趋势进行线性回归分析预测,从而得出未来的数量状况 4.工作目的:本课题所涉及到的内容,虽然国内外已有一些机构和团队在研究并取得了一定的成果,但是效果并不是特别理想,有待于进一步改进。本课题的研究有助于国内外相关技术研究,为此尽一份自己的薄力。 二、参考文献1.Aman Ullah,David E A Giles(1997).Handbook of Applies Statistics, Southern Methodist University.Marcel Dekker,Inc.pp.507-553.2.Banerjee.A.J.D

3、olado.J.W.Galbraith ,D.F Hendery(1993) Co-integration,Error-Correction,and the Econometric Analysis of Non-stationary Data.Oxford University Press oxford.3.P.heyman.M.J.Sobel(1990)Handbooks in Operations Research and Management Sciencr Vol.2.ATOCHASTIC MODELS.State University os New York at Stony Br

4、ook4徐国祥.管理统计学M.上海:上海财经大学出版社,1995:39-54.5财政部司.企业财务风险管理M.北京:经济科学出版社,2004:16-21.6茆诗松,程依明,濮晓龙.概率论与数理统计教程M.北京:高等教育出版社,2004.三、设计(研究)内容和要求(包括设计或研究内容、主要指标与技术参数,并根据课题性质对学生提出具体要求。)企业产品完工之后,必须对产品进行质量检验,对产品数量较多的企业来说不可能逐件检查,而采取概率论中的重复试验用频率逼近概率这一思想可对合格率情况进行有效的预测分析另外。现代企业生产经常会或多或少地有风险性因而通过各有关因素的未来状况及其发生的概率来计算出各个方案

5、的期望值,并将它作为评价优劣的标准来进行决策建立回归模型,根据预测对象与相关因素数据结构的变化特征,选择合适的数学表达式,并确定模型的参数估计值,对回归预测模型进行分析评价通过定性判断或统计方法对预测模型的适用性和精确度进行评价。主要指标及技术参数:理解参数回归方法发展与区别;深入研究分参数估计理论,形成自己的观点和看法;利用R软件进行数据分析,使所得结果尽量反映现实水平。具体要求: 1.基础理论知识要牢固,对于参数估计方法进行透彻了解。 2.要大量浏览相关内容的文献,以现有的成果为基础。 3.理论推导要严谨,保证其正确性的前提下,努力实现创新与突破。 4.培养独立思考的习惯,锻炼分析问题、解

6、决问题的能力,开发创新潜力,掌握科技论文的写作规范。 指导教师(签字)年 月 日(内容包括:课题的来源及意义,国内外发展状况,本课题的研究目标、研究内容、研究方法、研究手段和进度安排,实验方案的可行性分析和已具备的实验条件以及主要参考文献等。)一 课题的来源及意义随着改革的不断深化和商品经济的大力发展,对经济现象不仅要做质的论证,性的分析,还要注意对经济和经济管理进行量的研究这对我们更好地掌握经济政策和经济政策分析、决策是十分重要的近几年来,我国的经济学界和经济部门越来越意识到用数学方法来解决经济中问题的重要性,正在探索经济问题应用数学的规律实践证明,数学是对经济和经济管理问题进行量的研究的有

7、效工具,为经济预测和决策提供了新的手段,有助于提高经济管理水平和效益 概率论与数理统计在企业管理等方面的应用越来越广泛,在指导人们经济决策等方面也发挥着重大作用。充分利用概率统计理论可以提高企业的经济效益。概率选择在解决管理当中的不确定问题显示出了重要作用,并渗透到现代管理领域的各个角落。现代管理包括计划、组织、协调、控制与领导五大职能,而每一职能都有相应的概率选择的应用范畴。通过在各领域中应用的典型实例,可以验证概率选择在现代管理应用中的作用与有效性在企业产品完工之后,必须对产品进行质量检验,对产品数量较多的企业来说不可能逐件检查,而采取概率论中的重复试验用频率逼近概率这一思想可对合格率情况

8、进行有效的预测分析另外。现代企业生产经常会或多或少地有风险性因而通过各有关因素的未来状况及其发生的概率来计算出各个方案的期望值,并将它作为评价优劣的标准来进行决策本文将利用R软件帮助我们解决问题,R软件适用于概率统计分析,对数据进行现行回归分析以及方差分析,构造模型,揭示问题的具体形式和规律性。帮助我们进行数据分析,解决实际问题,对结果分析,预测,评价。二国内外发展状况决策理论是1939年由统计学家瓦特作为假设检验和参数估计等经典的统计理论提出的。对于决策的制定包括四个步骤:找出指定决策的目标;找到可行方案;对诸多方案进行抉择;对已选择的方案进行评价。但是随着信息公司和咨询公司的出现,如果在决

9、策时又进行某种试验和调查得到了关于状态的补充信息和附加信息,就可以对先验概率加以修正而得到后验概率。这种概率既概括了原先的知识和经验,又吸收了当时试验和调查的信息,可以更准确地决策,提高决策的期望收益,将概率论和数理统计应用于风险决策,使风险的分析与处理发生质的飞跃。三课题研究目标 通过对数据的分析观察,利用软件对数据进行观测研究分析建立模型,对结果进行线性回归分析,提出新的改进方法,提高企业管理效率。四课题研究内容1.介绍常用方法,其中常用方法示例。2.分析数据,利用软件对数据进行方差,期望分析。3.对结果进行评价五课题研究方法 第一步,理论介绍对当前各种方法的理论进行介绍。 第二步,理论分

10、析对预测对象的特征与预测对象有关的因素进行分析确定预测对象的主要影响因素,并研究起变化的预测现象的影响第三步,收集数据建立回归模型,根据预测对象与相关因素数据结构的变化特征,选择合适的数学表达式,并确定模型的参数估计值第四步,对回归预测模型进行分析评价通过定性判断或统计方法对预测模型的适用性和精确度进行评价六课题研究手段 看书.看论文.上网查阅国内外相关领域资料,综合分析现有优秀团队学者所做工作优缺点,提出可行性的改进研究分析。通过软件编写程序进行数据分析,期望的结果分析研究,验证其解决问题的有效性。七可行性分析 本文主要利用R软件对数据进行线性回归分析。国内外已有许多学者利用树立同理只是对风

11、险决策进行研究。从而对本文的的研究提供了理论上的支持。本人在大学期间应经学习了数理统计课程,并且可以熟练使用R软件,加之前辈们的研究,为本课题的研究及完成提供了支持和保证。八 进度安排。 2009年12月25日-2010年2与28日 手机查阅相关资料 2010年3月1日-2010年3月15日 翻译外文资料,课题报告的完成 2010年3月16日-2010年4月20日 理论分析和系统总体设计 2010年4月21题-2010年5月13日 系统实现 2010年5月14日-2010年5月31日 撰写毕业论文 2010年6月1日-2010年6月18日 修改论文,毕业答辩九具备实验条件 算法编写所需软件R软

12、件 可查找的数据库及网络相关文献资料主要参考文献1.Ren HRisk lifesycle and risk relationship。International Journal 0f Project Management 1994.2.Emst, M., Paulus, M. P. Neurobiology of Decision Making: a Selective Review From a Neurocognitive and Clinical PerspectiveJ. Biological Psychiatry, 2005, 58(8): 597604.3梁之舜.概率论及数理统计

13、(上)M.北京:高等教育出版社,1983.83-98 4陈萍.概率与统计方法在企业管理中的应用分析J.商场现代化,2008(9).5赵恒峰风险问关系的研究及其在风险原理中的应用科技原理,1996.17(4)6李少斌经济管理中的教学方法M.武汉工业大学出版社19957魏宗舒概率论与教理统计M.高等教育出版社,1982选题是否合适: 是 否课题能否实现: 能 不能指导教师(签字)年 月 日选题是否合适: 是 否课题能否实现: 能 不能审题小组组长(签字)年 月 日摘 要 人类在从事经济、政治活动中面临各种风险。国际贸易的全过程一般来说是比较复杂和漫长的,因此存在的风险也比较多,如信用风险、外汇风险

14、、运输风险、投标风险、制造风险、政治风险等。面对这些风险,决策者需要一种理论作为指导.数理统计是研究大量随机现象统计规律性的的数学学科,数理统计就是研究如何以有效的方法,整理和分析受到随机性影响的数据,以对所考察的问题作出判断或者预测,直至为采取决策和行动提供依据和建议。本文介绍了风险决策理论的产生发展,以及数理统计在风险决策中的应用。基于1991年到1997年某保险公司保费收入数据,用回归和方差分析方法,进行科学预测, 从而进行最后决策。关键词:数理统计;风险决策ABSTRACTHuman beings engaged in economic and political activities

15、 of various risks.The whole process of international trade is generally more complicated and lengthy, so theres more risk, such as credit risk, foreign exchange risk, transport risk, bidding risks, manufacturing risks, political risks.The face of these risks, policy makers need a theory as a guide.

16、Statistics is an abundance of statistical regularity of random phenomena mathematics, statistics is a study of how effective way to collate and analyze the data by the random effects tostudy on the issue of judge or forecast, decisions and actions to be taken to provide evidence and recommendations.

17、This article describes the emergence of risk decision-making theory development, and mathematical statistics in the risk of Decision. Based on a insurance premium income data in 1991 and 1997 data, using regression and variance analysis, scientific prediction, and thus the final decision.Key words:S

18、tatistics;Risk decision目录第一章文献综述11.1 研究背景及意义11.2国内外发展状况11.21 国外发展状况11.22 国内发展状况21.3 研究内容及目标21.4 论文的组织结构2第二章 数理统计及风险决策理论32.1 风险的概念及特征32.1.1 决策的概念32.1.2 决策的种类32.13 决策中的三个基本概念32.1.4 决策的原则42.2 数理统计常用理论模型42.2.1 线性模型概念42.2.2 线性回归模型52.2.3 一元线性回归分析72.2.4 方差分析模型112.3 贝叶斯方法11第三章线性回归分析方法的应用163.1 引言163.2 模型的建立及

19、方法分析163.3 总结和结论20第四章总结21参考文献22 外文资料 中文译文 致谢 第一章文献综述1.1 研究背景及意义生活中到处都是目标冲突。人们的行为充满了矛盾、不确定性和不一致性。我们经常会面对种种吸引人的选择,作出后果无法预料的决定所有的主管都曾面临过这种进退两难的境地:选择集权式组织还是分散式组织,全球化还是本地化,大而全还是小而精,寻求代理商还是自己培养业务员,缓慢蜕变还是迅速变革,在国内还是国外生产,竞争还是合作,联盟还是独立但是,矛盾也让人们的行为条件变得更优越,矛盾的本质就是自由。由于矛盾的存在,情况随时会改变,达成目标可能会有多种路径,有时候还会有互相竞争的目标可供选择

20、。在这种竞争环境中,管理阶层知道,他们不能放弃任何一个选择,必须每天寻找新的平衡,依据新的条件作出决定。这就是所谓的“决策”放眼未知的未来,确定行动的方向。斯沃琪(Swatch)前CEO弗里茨阿曼(Fritz Ammann)曾说过:“管理阶层作决策的时间,通常和决策内容的规模与重要性成反比。”决策并不是要你接受某事,而是有意识地使你倾向于某一方决策的前提就是不确定性。如果你相信自己,对自己的分析能力没有任何怀疑,你也就不会怀疑自己的选择。而后,你就会对行为的结果做一个大致的估算,并确定该如何实施。解决问题的过程对你来说也许易如反掌,但这并不是决策。只有当情况模糊不定、方向不明,而且你对所有的备

21、选方案都充满疑惑时,你所做的决定才叫决策。决策需要耗费精力,因为每一种方案看起来都很合理,你不是在对错之间做出选择,而是在“硬币的正反面之间”做出选择。做决策时,你肯定会受到来自决策相反方的阻力。那些想逃避阻力的人,我们称之为“决策的弱者”。在很多企业里,人们总是设法逃避做决策,因为做出错误决策的后果,往往比不做决策的后果严重得多。数理统计方法在经济领域中的一个重要方法就是抽样调查,在经济学中,早在20实际20至30年代,时间序列分析方法就曾经用于市场预测,现在一系列的统计方法,从回归分析到随即过程分析,都在经济,质量管理,风险决策有了重大的应用,始终离不开数理统计方法的应用。近半个世纪以来。

22、数理统计在风险决策中的应用有了较大发展,计算机的广泛应用对数理统计的发展产生了重要影响,没有现代电子计算机,就没有现在统计学应用,许多重要统计方法应用都涉及大量的计算,通过计算机模拟,可以使某些复杂的精确分布得到有实用意义的解。1.2国内外发展状况1.21 国外发展状况近几十年来,数理统计,风险决策理论在国内外得到了迅猛的发展,应用于在工农业生产。医药卫生与生物学方方面,自然科学,社会经济管理等方面,尤其在风险决策方面发展迅猛。国外关于数理统计的技术研究以及应用的文章相对较多。 V.V.Fedorov研究了线性统计模型,Varshney对多元Bayes决策中的Minimax方法作出了深入的研究

23、。约翰冯纽曼和奥斯卡摩根斯坦提出预期效用理论在不确定情况下可能得到各种结果的效用的加权平均数,对风险决策进行评价。 国外对数理统计风险决策的研究不仅仅限制在技术应用层面上,他们对于数理统计实际应用理论的完善也作出了重大贡献。1.22 国内发展状况 国外关于数理统计分析的研究趋于成熟,而国内关于数理统计分析的研究总体相对偏少,且多停留在应用层面上,罗思江,吴立新利用方差分析行稻作栽培试验安排和分析,将能揭示栽培措施与产量、质量、成本之间的关系,韩新焕,吴静利用贝叶斯条件概率决策模型选择最优策略做风险决策。徐凌宇,石绥祥利用Neyman-Pearson决策准则做海洋风暴潮预报。吴志安,张旭红应用假

24、设检验判断样本与样本,样本与总体的差异是由抽样误差引起还是本质差别造成的统计推断方法检测结构混凝土强度中的应用。1.3 研究内容及目标本论文介绍了数理统计及风险决策的主要体系及其内容,分析了数理统计理论应用到风险决策的主要方面。通过本部分的研究,笔者希望读者能够对数理统计理论在风险决策中的应用有个基本的认识,并对其整个理论体系有些初步的把握。数理统计理论在风险决策中有着重要的应用,工厂生产数量和市场需求有着十分显著的影响。本文以取自某保险公司数据为基础,用数理统计的方法作了细致的分析。虽然样本量较少,但这种分析仍然有一些现实意义。1.4 论文的组织结构 第一章详细讨论了论文的研究背景及研究意义

25、。论述了课题的来源和国内外发展现状,阐述了论文的研究内容和研究目标,并对论文的组织结构予以讨论。第二章重点分析了数理统计风险决策理论体系,介绍集中梳理数理统计应用方法,以及基于理论的若干模型。第三章是本文的实证部分,用数理统计的方法对来自某保险公司收入,对未来收入及赔款进行预测。第四章对整篇文章进行了总结。第二章 数理统计及风险决策理论2.1 风险的概念及特征2.1.1 决策的概念 为了实现特定的目标,根据客观的可能性,在占有一定信息和经验的基础上,借助一定的工具、技巧和方法,对影响未来目标实现的诸因素进行准确的计算和判断选优后,对未来行动做出决定 决策概念有狭义和广义之分。狭义的决策概念专指

26、决策者对行动方案的最终选择,即通常所说的最终“拍板”。广义的决策概念是把决策理解为决策者制订、选择、实施行动方案的整个过程。根据决策人所掌握的信息的程度不同,决策问题可以分为三类:(1)确定性决策:有一个备择方案时即为确定性决策;(2)风险决策:未来各种状态出现的可能性大小可以用概率表示出来;(3)不确定决策:不知道客观状态出现的概率的条件下进行决策。 风险决策属于不确定性决策范畴。经济学研究中引用概率概念把风险决策定义为:风险决策是概率己知的不确定性决策。2.1.2 决策的种类 从不同的角度分类有:按决策问题所处的条件分为确定性决策、不确定型决策和对抗型决策;按问题的性质分为程序化决策和非程

27、序化决策;按决策涉及的范围分为总体决策和局部决策;按决策过程是否运用数学模型来辅助决策分为定性决策和定量决策;按决策目标的数量分为单目标决策和多目标决策;按决策的整体构成分为单阶段决策和多阶段决策。2.13 决策中的三个基本概念决策函数概念:对于一个推断问题的回答,即作出一个判断,与取得的样本有关,所谓判决函数就是指一个样本空间上,取值于判决空间的函数。若选定了判决函数,得到的样本为则所采取的判决就是损失函数概念:对于每个统计推断问题,总存在存在不同的判决,因此需要评价判决的好坏,并选择一个依赖于参数和判决的函数,他表示当参数真值,而采取的判决为损失函数,他是定义在上的非负函数,称为损失函数。

28、风险函数概念:由于判决依赖于,因此对判决函数,相应的损失函数是一个随机变量,我们不能根据某个样本观测值所采取的判决的损失来衡量的好坏平均损失是一个合理的度量,记称为风险函数。决策的目标是要找出一个决策方案,使其对各个自然状态风险值均为最小。应用中,常常对确定一个概率分布,并使其平均的风险值达到最小,其中:2.1.4 决策的原则决策的公理概念:决策的公理是所有理智健全的决策者都能接受或承认的基本原理,是许许多多决策者长期决策实践经验的总结 决策的原则 做出正确的决策应遵循的三条原则可行性原则;经济性原则;合理性原则。2.2 数理统计常用理论模型2.2.1 线性模型概念 变量关系有两种基本类型:一

29、种只要知道自变量取值所取的值,因变量y取值唯一确定,这种变量之间的确定性关系称之为函数关系。另一种是因变量y的取值与自变量的取之有关,这种变量间关系称之为相关关系。由于影响因变量y的因素很多,且由于认识水平有限即客观条件限制,人们只能考虑其中一部分的。其他未被控制考虑的因素,由于未被控制,不可避免对因变量y产生随即影响,因此应当是一个随机变量。其分布由自变量的取值及随机误差所确定。假设一边两与个自变量之间存在简单线性关系 其中为一个随机变量。进一步假设对自变量的n组不同取值,得到因变量的n次观测,则通过上式有关系式成立或写成矩阵形式为 其中这里表示随机误差向量,满足, 称模型 为线性模型 记作

30、 这里Y表示变量y的n次观测量组成的列向量,称为观测向量。X是k个自变量在n次观测中的取值,对于不同类型的线性模型,的取值有不同的特征,但都是可以控制的。当取值可以任意选定时,我们总是希望找到某种更好的选择。使由之产生的模型在进行统计推断的时候可能得到更好的较好的结果,这是实验设计问题,还假定n次观测量相互独立,具有公共方差,此时,这里可以是未知参数。他也是模型中的位置参数,成为误差方差。 对的不同取值,可得到不同的线性模型,当他们是表示随机离散或者连续随机变量的一组取值时,模型是线性回归模型。若只取0,1两值,则为方差分析模型。2.2.2 线性回归模型当变量间存在相关关系时,我们特别关心因变

31、量y的取值的平均,即在给定的条件下,随机变量y的数学期望,记作此时,因变量y与自变量之间的相关关系可以表示为 这里忍让表示为随机误差上式成为y关于的回归。因此我们可以把随机变量的取值分解为两部分,一部分是y对自变量取值的依赖关系,它反映了y取值的平均趋势,这是相关关系的主要部分。另一部分是随机误差的大小,加入不能限制回归函数的类型,企图从的任意函数中找到一个能反映y的数学模型的变化规律是困难的。因此从被研究问题的物理方面,技术方面等来确定回归函数的类型。回归函数可以实现性的,也可以是非线性的。但是对于线性回归中回归函数是参数的线性回归。 是最简单且最重要的情况。在理论上有比较深入的讨论和一般的

32、结果。也是非线性回归的基础。因此我们只考虑称为理论线性回归模型。由随机误差在线性模型中的地位可见,他的概率性质决定了模型的性质。根据回归函数的意义,自然有。关于变量的n次观测,我们假定各次观测所受的随机影响程度相同。且任意两次观测的误差不相关。这种假定在一般情况下是合理的。称之为Gauss-Markov条件 这里如那样的随机误差向量 且,为了不引进更多符号。以后有时候表示一个随机变量,有时候表示为一个随机向量。由模型的意义,这样我们可以得到线性回归模型 ,称之为常数项。称为回归函数,表示自变量的改变时对y的影响大小。在某些问题当中,我们还假设满足正态条件 其中,也是线性回归模型中的重要参数。为

33、n阶单位阵。为了对未知参数进行估计或者研究其他有关的统计推断问题,需进行试验,设做了n次试验。第i次试验的观测值为,称为第i个试验点。以后我们假定试验总数n不小于线性回归模型 包含的未知参数个数,且设计矩阵X是列满秩的,即 2.2.3 一元线性回归分析一元线性回归模型设随机变量与普通变量间存在相关关系,且假设对于的每一个取值有 其中 都不是不依赖于的未知参数。记则对做这样的正态假设,相当于假设 其中未知参数 都是不依赖于 称为一元线性回归模型,其中称为回归系数。因变量两部分组成,一部分是的线性函数另一部分是随机误差,是人不可控制的。下面的任务是对 的估计、参数 的最小二乘估计取的个不全相同的取

34、值,作次独立试验,得到样本和样本观测值把样本观测值代入 得 , 而使到最小为原则对未知参数和的估计称为未知参数和的最小二乘估计,估计值记为和这时候称为关于的经验回归方程,简称回归方程。其图象称为回归直线下面求未知参数 的最小二乘估计极值点有 得方程组解方程组得唯一解中的和为未知参数的最小二乘估计量 回归方程也可写成这表明,关于样本值的回归直线通过散点图的几何中心。为了计算上的方便,我们引入记号这样, 的估计值可写成 的估计由于记称为处的残差。平方和称为残差平方和。为了计算,将做如下分解 再由得的另一个分解式相应的统计量为可以证明于是即 这样就得到了的无偏估计量线性假设的显著性检验在以上的讨论中

35、,我们假定关于的回归函数具有形式在处理实际问题时,是否为的线性函数,首先要根据有关专业知识和实践来判断,其次就要根据实际观察得到的数据运用假设检验的方法来判断。这就是说,求得的线性回归方程是否具有实用价值,一般来说,需要经过假设检验才能确定。若线性假设符合实际,则不应为零,因为若则就不依赖于了。因此,我们需要检验假设 用检验法来进行检验,可以证明由和得到与相互独立,故有即 且即得的拒绝域为 此处为显著性水平。当假设被拒绝时,认为回归效果是显著的,反之,就认为回归效果不显著。回归效果不显著的原因可能有如下几种:(1)影响的取值,除了及随机误差外还有其它不可忽略的因素;(2)不是的线性函数,而是其

36、它形式的函数;(3)与不存在关系。2.2.4 方差分析模型 方差分析作为分析数据的一种重要工具,是数理统计的基本方法。同回归分析一样,方差分析也是研究一些因子与某个指标的相关关系,研究哪些因子对指标是显著的,哪些因子对指标的影响不显著,但他们是也有不同,首先,在回归分析中,自变量一般是取连续值的数量因子,而方差分析中的自变量,有时是一种属性因子,其次,回归分析的目的在于找出自变量与因变量之间关系的数学表达式,一般需要做相当多次试验,但如果只是为了弄清自变量对因变量的影响是否显著,则可以按照预定的计划,只作少数的试验,就可以用方差分析的方法做出判断,另外,回归分析的设计矩阵,一般如所要求,是列满

37、秩的,但在方差分析中,设计矩阵中的元素只是表示某一效应在某次试验中的有无,通常只取0,1两个值,设计矩阵常常是降秩的,因而对实验的设计有一定的要求,从某种意义来说,方差分析中的问题比回归分析复杂些,只是选择适当的设计矩阵,才能顺利的计算,分析,解释方差分析所考虑的问题。2.3 贝叶斯方法虽然在一批被估产品而言,不合格产品率是一个未知常数,但是如果这种产品已经生产了很多批,各批不合格率自然不尽相同,所以从长远看可以吧作为一个随机变量,需要估计的这批产品不合格率,相当于随机变量的一个抽样值,根据过去的经验,对已有了认识,能够用数学形式表示为服从 上的一个概率分布,这是在对这批产品进行抽样观测以前就

38、已得到的分布,称为先验分布,样本 的分布,则是随机变量取值时的条件分布。判决函数的风险函数,应看成,是的函数,仍为随机变量。所以关于平均。称为判决函数在先验分布下的贝叶斯风险。如果和都有连续性分布,则可写为 其中是和联合密度函数。当和均为离散型分布时有如果判决函数对任意的有则称 是最优的。这个准则叫做贝叶斯准则。如果所考虑的判断问题是求的点估计,则称满足条件条件 的判决函数为的贝叶斯估计。这里需指出,贝叶斯估计依赖于先验分布的对于不同的,的贝叶斯估计可以是不同的由贝叶斯公式有因此其中是的边缘分布密度,是给定 时的条件分布密度称为的后验分布由 可知后验分布综合了先验信息与样本中关于的信息。是先验

39、认识在得到样本后的一个变化。给予后验分布的有关的统计推断将会得到不同程度的改进。由可以得到如果记它表示在给定样本条件下,采取判决造成的平均损失,称为在给定样本时,判决函数的后验风险,类似地,对离散型情况,后验风险为 所以的贝叶斯估计依赖于总体分布组先验分布和损失函数,对此我们无法给出一般结果,但取平方损失函数,则是有以下定理:在平方损失函数下的贝叶斯估计就是后验分布的均值,即考虑参数假设问题当损失函数取为式 判决函数的风险函数为特别当原假设,备抉择都是简单假设检验时,风险函数为当简单假设检验问题,参数空间仅包含两个点所以先验分布是一个简单的两点分布,记为 。当损失函数取值为 一个检验函数的贝叶

40、斯风险为所谓贝叶斯检验就是贝叶斯风险达到最小检验函数,它一定是似然比检验。对简单假设检验问题,如果取损失函数 那么在先验分布 下的贝叶斯检验为似然比检验 如果所考虑的问题是参数的区间估计问题,则相应的贝叶斯解和Minimax解分别被称为贝叶斯区间估计和Minimax区间估计,在经典的区间估计理论中,参数是一个通常的未知常数,没有任何随机性,因此区间包含的概率为这句话的意思是指随机区间内的概率为而不是指作为一个随机变量落在区间内的概率为,但是贝叶斯学派也把看成具有一定分布的随机变量,任然采用的记号,把表示在得到样本观测值后的后验分布那么使得成立的称为在先验分布下的水平为的贝叶斯置信下界,虽然在形

41、式上,与经典的置信下界相似,但水平的意义不同。第三章线性回归分析方法的应用3.1 引言本章是该论文的实证分析部分,举例说明,主要是利用数理统计的中的回归方法研究1991到1997年的某保险公司数据。本章首先建立模型并对研究方法进行比较分析,然后对于该组数据进行描述分析,利用R软件计算数理统计数据的结果并得到结论。3.2 模型的建立及方法分析归 回归分析是研究变量与变量之间的依赖关系的方法, 它试图通过统计资料, 来判断某些变量之间是否存在相关关系, 相关的密切程度, 或近似地确定它们之间的数量关系。计算机在保险领域的应用, 使得回归分析应用子保险经营不再是一项复杂工程。回归模型的建立, 可用于

42、保险经济预测, 预测业务的发展趋势, 它改变了过去那种全凭经验进行估计的传统预测方法, 提高了预测的准确性, 避免了由纯定性分析造成的水份大、数据不准等弊病, 还可以提高期望值的准确性,如赔款的预测可以帮助确定给付准备金提存的数量例1 预测保费收入年度1991199219931994199519961997保费收入100165185262318400445现在预测该公司1997 1998年保费收入通过作散点图看出, 可以用一元线性回归预测。为了计算方便起见, 可设 那么1997年和1998年为 由于 于是可代入公式得参数 所得的样本回归线为 由此回归线1779 1998年的保费收入的预测值可计

43、算如下 (万元) (万元)至于决定系数也易计算出 说明样本回归线对实际保费收入的变差的解释能力为98.78%, 即保费收入与时间变量之间存在十分近似线性的关系。当然, 由于存在随机干扰因素, 预测不可能绝对准确, 因此, 有必要求出实际值的置信区间。 查分布表可知所以的实际值将以95%的置信度落在的范围内即在452.96(万元)至550.76(万元) R软件运行程序为x-c(-3,-2,-1,0,1,2,3)y-c(104,162,188,264,320,400,442)plot(x,y)syy-var(y)*6x1-x-mean(x)y1-y-mean(y)sxx-var(x)*6b1-sxy/sxx;b0-mean(y)-b1*mean(x)#决定系数r2-sxy2/(sxx*syy)#sigma s estimatorsig2-(syy-b1*sxy)/(7-2)b1b0r2sig例2某保险公司各年的保费收入及赔款支出年度1991199219931994199519961997保费收入11826236051277511851890保费支出8.061.5142.6270.14881151984单位 万元若预计年的保费收入为2000万元, 试预测年赔款支出为多少?对于赔款的预测, 可采用两种方式(

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 办公文档 > 其他范文


备案号:宁ICP备20000045号-2

经营许可证:宁B2-20210002

宁公网安备 64010402000987号