《科生毕业设计基于PLC的直流电动机双闭环调速系统设计.doc》由会员分享,可在线阅读,更多相关《科生毕业设计基于PLC的直流电动机双闭环调速系统设计.doc(46页珍藏版)》请在三一办公上搜索。
1、1 绪论1.1 直流电动机简介直流电动机调速系统在当前的工业生产中应用相当广泛。比如轧钢分厂的可逆轧钢机、机修分厂的龙门创床那样需要经常正、反转运行的调速系统,尽可能地缩短直流电动机的起动,制动过程的时间是提高生产率的一个重要因素。最初的直流调速系统是采用恒定的直流电压向直流电动机电枢供电,通过改变电枢回路中的电阻来实现调速。这种方法简单易行,设备制造方便,价格低廉。但缺点是效率低、机械特性软、不能在较宽范围内平滑调速。50年代末出现的晶闸管,它具有体积小、响应快、工作可靠、寿命长、维修简便等一系列优点,采用晶闸管供电,不仅使直流调速系统经济指标上和可靠性有所提高,而且在技术性能上也显示出很大
2、的优越性。因而,晶闸管直流调速系统迅速发展,晶闸管变流技术也日益成熟,直流调速系统更加完善。直流电动机和交流电动机相比,其制造工艺复杂,生产成本高、维修困难,需备有直流电源才能使用。但因直流电动机具有宽广的调速范围,平滑的调速特性,较高的过载能力和较大的起动、制动转矩,因此被广泛地应用于调速性能要求较高的场合。在工业生产中,需要高性能速度控制的电力拖动场合,直流调速系统发挥着极为重要的作用,高精度金属切削机床,大型起重设备、轧钢机、矿井卷扬、城市电车等领域都广泛采用直流电动机拖动。特别是晶闸管与直流电动机拖动系统具有自动化程度高、控制性能好、起动转矩大、易于实现无级调速等优点而被广泛应用。直流
3、调速系统具有调速性能优良、可靠性高等优点,被广泛的应用。直流调速系统是弱电控制与强电控制相结合的系统。系统弱电部分检测系统工作时的转速、电枢电流、电机温度、晶闸管温度等信号,根据检测到的信号发出控制信号。1.2双闭环调速系统直流调速系统,特别是双闭环直流调速系统是工业生产过程中应用最广的电气传动装置之一。广泛地应用于轧钢机、冶金、印刷、金属切削机床等许多领域的自动控制系统中。它通常采用三相全控桥式整流电路对电动机进行供电,从而控制电动机的转速,传统的控制系统采用模拟元件,如晶体管、各种线性运算电路等,在一定程度上满足了生产要求。由于调速系统的主要被控量是转速,故把转速负反馈组成的环作为外环,
4、以保证电动机的转速准确跟随给定电压, 把由电流负反馈组成的环作为内环, 把转速调节器的输出当作电流调节器的输入,再用电流调节器的输出去控制电力电子变换器UPE,这就形成了转速、电流双闭环调速系统。直流双闭环调速系统由给定电压、转速调节器、电流调节器、三相集成触发器、三相全控桥、直流电动机及转速、电流检测装置组成,其中主电路中串入平波电抗器,以抑制电流脉动,消除因脉动电流引起的电机发热以及产生的脉动转矩对生产机械的不利影响。双闭环系统在突加给定信号的过渡过程中表现为恒值电流调节系统,在稳定和接近稳定运行中表现为无静差调速系统,发挥了转速和电流两个调节器的作用,获得了良好的静、动态品质。1.3 P
5、LC在电机调速中的应用可编程控制器PLC是通用的自动化控制装置,是船舶实现自动化、智能化控制的核心控制元件。它将传统的继电器控制技术、计算机技术和通讯技术融为一体,采用模块式组合设计,具有控制功能强,可靠性高、使用灵活方便,易于扩展而且PLC系统开发简单、编程容易、抗干扰能力强、适合在工业环境下工作,故而只要合理设计,降低成本,它将会受到现场技术人员的欢迎。,在船舶主机遥控系统、锅炉控制系统中央冷却控制系统等重要设备上得到了广泛应用。在本课题所进行的双闭环调速系统设计中,采用PLC作为系统的主控器件。之所以选择用PLC来实现系统的控制思想,是因为PLC有较高的易操作性,它具有编程简单,操作方便
6、,维修容易等特点。除上述优点外,PLC具有超强的稳定性和长时间连续工作的能力,因而,PLC是为工业生产过程控制化专业设计的控制装置,具有比通用计算机控制更简单的编程语言和更可靠的硬件。采用了精简化的编程语言,编程出错率大大降低。本文首先详细的介绍了大功率直流调速系统的基本原理,分析了调速系统的基本组成以及基本调速方法;然后系统地论述了现代PLC控制技术,介绍了PLC控制系统的基本设计方法;接着本文以经济性好、可靠性高的大功率晶闸管为调速系统可控整流电源,根据现代控制理论,采用转速电流双闭环调速方法对大功率直流调速系统的主电路、转速控制电路以及信号检测电路进行设计,结合现代PLC控制技术对调速系
7、统运行进行控制。2 系统总体设计及算法模型确定2.1 系统总体设计系统总体设计根据前述,采用PLC及其外部接口设备对电机进行检测和控制。对于经常正、反转运行的调速系统,利用双闭环调速系统具有十分明显的优势。它能充分利用电机的过载能力,在过渡过程中保持电流(转矩)为允许最大值,使电力拖动系统以最大的加速度启动,到达稳定转速后,又让电流立即降下来,使转矩马上与负载相平衡,从而转入稳态运行。这时,启动电流成方波形,而转速是线性增长的。转速、电流双闭环直流调速系统如图2-1所示。PLCA/D电流反馈电动机数字触发器数字PI数字PID/AU1Un*U1*Uk*数字给定Un数字I电流自适应环节速度反馈图2
8、-1 转速、电流双闭环直流调速系统框图为实现转速和电流两种负反馈分别作用,可在系统中设置两个调节器,分别调节转速和电流,即分别引入转速负反馈和电流负反馈。二者之间实行嵌套连接,把转速调节器的输出当作电流调节器的输入,再用电流调节器的输出去控制电力电子变换器UPE。从闭环结构上看,电流环在里面,称作内环;转速环在外边,称作外环。这就形成了转速、电流双闭环调速系统。PLC要从外部输入电流反馈和转速反馈信号,输出触发脉冲信号,其余工作均在PLC内部完成,数字给定也是用软件方法在PLC内部设定。2.2 双闭环调速系统常用控制方法介绍双闭环调速系统采用矩形逼近离散化方法时,这种算法分析简单,转速调节器和
9、限幅器的作用是分开的,由于转速调节器有积分饱和作用,c(k)值将会变得很大,转速将会出现较大的超调量,使速度调节时间变得很长。在此,限幅器并没有限制c(k)的值,而只是限制了u(k)的值。采用双PI调节器,动静态性能好,抗扰性能佳。速度调节及抗负载和电网扰动,可获得良好的动静态效果。电流环校正成典型型。为使系统在阶跃扰动时无稳态误差,并具有较好的抗扰性能,速度环设计成典型型系统。双闭环调速系统采用PID算法可实现直流电动机软起动,而且时间可调。模块内有积分环节,可实现直流电机软起动。根据用户实际需要,可调起动时间,给用户预留了2个端口,调节2个电位器,可改变积分时间长短,从而改变电机起动时间。
10、积分环节适用于起动过渡过程平稳的场合。如果用户要求在负载一定的条件下,电机以最短的时间起动,即以最大的等加速度起动,可把积分环节去掉,模块所留出的2个端口作为电流环和速度环的输出限幅,调节电流的输出限幅,改变电机的最大起动电流,获得理想的过度过程。1、调速方式的选择直流电动机电枢回路的电压平衡方程为 (2.1) 电枢反电势为 (2.2)由此得到转速特性方程如下 (2.3)由转速特征方程可以看出,调节直流电动机的调速方法有如下3种:(1)调节电枢电压调速 改变电枢电压主要是从额定电压往下降低电枢电压,从电动机额定转速向下变速,属恒转矩调速方法。对于要求在一定范围内无级平滑调速的系统来说,这种方法
11、最好。Ia变化遇到的时间常数较小,能快速响应,但是需要大容量可调直流电源。(2)改变电动机励磁调速改变磁通可以实现无级平滑调速,但只能减弱磁通进行调速,从电机额定转速向上调速,属于恒功率调速方法。If 变化时间遇到的时间常数同Ia 变化遇到的相比要大得多,响应速度较慢,所需电源容量较小。(3)改变电枢电阻调速在电动机电枢回路外串电阻进行调速的方法,设备简单,操作方便。但只能进行有级调速,调速平滑性差,机械特性较软,空载时几乎没什么调速作用还会在调速电阻上消耗大量电能。 nT123图2-2 直流电动机机械特性对于要求在一定范围内无级平滑调速的系统来说,以调节电枢供电电压的方式为最好,其机械特性如
12、图2-2所示改变电阻时,转速n随电枢电压的降低而降低,但机械特性的斜率保持不变;改变电阻只能有级调速;弱磁通虽然能够平滑调速,但调速范围不大,往往只是配合调压调速方案,在基速以上作小范围的升速。所以本次设计采用调压调速。2.3 控制方法的确定算法是对特定问题求解步骤的一种描述,它是指令的有限序列,其中每一条指令表示一个或多个操作。算法分析的任务是对设计出的每一个具体的算法,利用数学工具,讨论各种复杂度,以探讨某种具体算法适用于哪类问题,或某类问题宜采用哪种算法。算法设计技术有很多,例如:贪心法、分之策略、动态规划、网络流、近似算法、随机算法等。算法设计的正确选择为从事实际问题的算法设计与分析工
13、作提供了清晰的、整体的思路和方法。算法设计与算法分析是不可分割的,算法分析是对于设计出的每一个具体的算法,利用数字作为工具讨论它的各种复杂度,就是算法分析的主要任务。2.3.1 PID控制的结构在工程实际中,应用最为广泛的调节器控制规律为比例积分微分控制,简称PID控制,又称PID调节。PID控制器问世至今已有近60年的历史了,它以其结构简单、稳定性好、工作可靠、调整方便而成为工业控制主要和可靠的技术工具。当被控对象的结构和参数不能完全掌握,或得不到精确的数学模型时,控制理论的其它设计技术难以使用,系统的控制器结构和参数必须依靠经验和现场调试来确定,这时应用PID控制技术最为方便。即当我们不完
14、全了解一个系统和被控对象或不能通过有效的测量手段来获得系统的参数的时候,便最适合用PID控制技术。 PID控制包含比例、积分、微分三部分,实际中也有PI和PD控制器。PID控制器就是根据系统的误差利用比例、积分、微分计算出控制量,图2-3中给出了一个PID控制的结构图:Kds给定量(输入)被控制量Ki/s误差被控对象Kp传感器反馈信号图2-3 PID控制的结构图控制器输出和控制器输入(误差)之间的关系在时域中可用公式(2.4)表示如下: (2.4)公式中,e(t)表示误差,也是控制器的输入,u(t)是控制器的输出, Kp、Tp与Ti分别为比例系数、 积分时间常数及微分时间常数。式(2.4)又可
15、表示为: (2.5)公式中,U(s)和E(s)分别为u(t)和e(t)的拉氏变换,Kp、分别为控制器的比例、积分、微分系数。 1、比例(P)控制 比例控制是一种最简单的控制方式。其控制器的输出与输入误差信号成比例关系。当仅有比例控制时系统输出存在稳态误差。 2、积分(I)控制 在积分控制中,控制器的输出与输入误差信号的积分成正比关系。 对一个自动控制系统,如果在进入稳态后存在稳态误差,则称这个控制系统是有稳态误差的或简称有差系统。为了消除稳态误差,在控制器中必须引入“积分项”。积分项对误差取关于时间的积分,随着时间的增加,积分项会增大。这样,即便误差很小,积分项也会随着时间的增加而加大,它推动
16、控制器的输出增大使稳态误差进一步减小,直到等于零。 因此,比例+积分(PI)控制器,可以使系统在进入稳态后无稳态误差。 3、微分(D)控制 在微分控制中,控制器的输出与输入误差信号的微分(即误差的变化率)成正比关系。 自动控制系统在克服误差的调节过程中可能会出现振荡甚至失稳。其原因是由于存在有较大惯性的组件(环节)和(或)有滞后的组件,使力图克服误差的作用其变化总是落后于误差的变化。解决的办法是使克服误差的作用的变化要有些“超前”,即在误差接近零时,克服误差的作用就应该是零。这就是说,在控制器中仅引入“比例”项往往是不够的,比例项的作用仅是放大误差的幅值,而目前需要增加的是“微分项”,它能预测
17、误差变化的趋势,这样,具有比例+微分的控制器,就能够提前使克服误差的控制作用等于零,甚至为负值,从而避免了被控量严重地冲过头。所以对有较大惯性和(或)滞后的被控对象,比例+微分(PD)的控制器能改善系统在调节过程中的动态特性。2.3.2 PID参数的调整在PID参数进行整定时如果能够有理论的方法确定PID参数当然是最理想的方法,但是在实际的应用中,更多的是通过凑试法来确定PID的参数。增大比例系数P一般将加快系统的响应,在有静差的情况下有利于减小静差,但是过大的比例系数会使系统有比较大的超调,并产生振荡,使稳定性变坏。增大积分时间I有利于减小超调,减小振荡,使系统的稳定性增加,但是系统静差消除
18、时间变长。增大微分时间D有利于加快系统的响应速度,使系统超调量减小,稳定性增加,但系统对扰动的抑制能力减弱。在凑试时,可参考以上参数对系统控制过程的影响趋势,对参数调整实行先比例、后积分,再微分的整定步骤。首先整定比例部分。将比例参数由小变大,并观察相应的系统响应,直至得到反应快、超调小的响应曲线。如果系统没有静差或静差已经小到允许范围内,并且对响应曲线已经满意,则只需要比例调节器即可。如果在比例调节的基础上系统的静差不能满足设计要求,则必须加入积分环节。在整定时先将积分时间设定到一个比较大的值,然后将已经调节好的比例系数略为缩小(一般缩小为原值的0.8),然后减小积分时间,使得系统在保持良好
19、动态性能的情况下,静差得到消除。在此过程中,可根据系统的响应曲线的好坏反复改变比例系数和积分时间,以期得到满意的控制过程和整定参数。如果在上述调整过程中对系统的动态过程反复调整还不能得到满意的结果,则可以加入微分环节。首先把微分时间D设置为0,在上述基础上逐渐增加微分时间,同时相应的改变比例系数和积分时间,逐步凑试,直至得到满意的调节效果。2.3.3 PID模块PID模块的开发使PLC具有闭环控制功能,即一个具有PID控制能力的PLC可用于过程控制。当控制过程中某个变量出现偏差时,PID控制算法会计算出正确的输出,并把变量保持在设定值上。PID算法一旦适应了工艺,就可以在工艺混乱的情况下依然保
20、持设定值。对于连续的PID算法: (2.6)然而系统编程计算的时候一般是采用离散型的增量式PID算法,因为指令执行需要时间,所以不管PLC和高速数字信号处理器DSP都是采用离散的算法。其中T是采样时间,总体来说采用时间越小,控制更精确,但是也不能过小,太小容易占用CPU资源,也容易产生的偏差较小,在运算的时候易被舍掉,从而产生积分量化误差。以下是离散算法: (2.7),代换之后变为: (2.8)PID调节器的参数直接影响到系统的性能。在高性能的调速系统中,有时仅仅靠调整PID参数难以同时满足各项静动态性能的指标。基于此,衍生出多种改进的PID算法,提高系统的性能。1、控制方式S7200的PID
21、回路没有设置控制方式,只要PID块有效,就可以执行PID 运算。在这种意义上说,PID运算存在一种“自动”运行方式。当PID运算不被执行时,我们称之为“手动”方式。同计数器指令相似,PID指令有一个使能位。当该使能位检测到一个信号的正跳变 (从0到1),PID指令执行一系列的动作,使PID指令从手动方式无扰动地切换到自动方式。为了达到无扰动切换,在转变到自动控制前,必须用手动方式把当前输出值填入回路表中。PID指令对回路表中的值进行下列动作,以保证当使能位正跳变出现时,从手动方式无扰动切换到自动方式:置给定值(SPn)过程变量(PVn)l 置过量变量前值(PVn-1)过程变量现值(PVn)l
22、置积分项前值(MX)输出值(Mn)PID使能位的默认值是1,在CPU启动或从STOP方式转到RUN方式时建立。CPU进入RUN方式后首次使PID块有效,没有检测到使能位的正跳变,那么就没有无扰动切换的动作。2.4系统参数计算2.4.1 主电路参数计算1、直流电动机:、,允许过载倍数=1.5;2、晶闸管装置放大系数:;3、回路总电阻:R=3.3;4、时间常数:,;5、电流反馈系数:;6、转速反馈系数:。 设计要求:(1)静态指标:无静差;(2)动态指标:电流超调量;(3)空载起动到额定转速时的转速超调量。2.4.2 电流环节(ACR)的设计1、确定时间常数(1)整流装置滞后时间常数。三相桥式电路
23、的平均失控时间;(2)电流滤波时间常数。三相桥式电路每个波头的时间是3.33ms,为了基本滤平波头,应有,因此取;(3)电流环小时间常数。按小时间常数近似处理,取。2、确定将电流环设计成何种典型系统根据设计要求电流超调量,保证稳态电流无差,可按典型I型系统设计电流调节器。3、电流调节器的结构选择电流调节器选用PI型,其传递函数为: (2.9)4、选择电流调节器参数ACR超前时间常数:;电流环开环增益:因为要求,故应取,因此 (2.10)于是,ACR的比例系数为。5、计算电流调节器的电路参数按所用运算放大器,取,各电阻和电容值计算如下: ,取; (2.11),取; (2.12) ,取。 (2.1
24、3) 6、校验近似条件电流环截止频率:(1)校验晶闸管装置传递函数的近似条件是否满足。因为,所以满足近似条件。(2)校验忽略反电动势对电流环影响的近似条件是否满足。现在,满足近似条件。(3)校验小时间常数的近似处理是否满足条件。现在,满足近似条件。2.4.3 转速环(ASR)的设计1、确定时间常数(1)电流环等效时间常数为;(2)转速滤波时间常数。根据所用测速发电机纹波情况,取;(3)转速环小时间常数。按小时间常数近似处理,取。2、确定将转速环设计成何种典型系统由于设计要求转速无静差,转速调节器必须含有积分环节;有根据动态设计要求,应按典型型系统设计转速环。3、转速调节器的结构选择转速调节器选
25、用PI型,其传递函数为: 。 (2.14)4、选择转速调节器参数按跟随和抗绕性能都较好的原则取h=5,则ASR超前时间常数:;转速开环增益:;于是ASR的比例系数为:。5、计算转速调节器的电路参数 按所用运算放大器,取,各电阻和电容值计算如下:,取; (2.15),取; (2.16),取。 (2.17)6、校验近似条件转速环截止频率。(1)校验电流环传递函数的近似条件是否满足。现在,满足简化条件。(2)校验小时间常数的近似处理是否满足条件。现在,满足近似条件。(3)校核转速超调量。当h=5时,不能满足设计要求,实际上这是按线性系统计算的,而突加阶跃给定时,ASR饱和,不符合线性系统的前提,应该
26、按ASR退饱和的情况重新计算超调量。2.4.4 按转速环(ASR)退饱和重新计算超调量当h=5时,;而,因此,能满足设计要求。3硬件设计3.1 系统总体结构图3-1为控制系统总体结构图,表示了系统的基本组成电路和各部分之间的主要关系,箭头表示信息的流向。从概略图可知,本系统基本由四部分组成,分别是PLC CPU主机部分、电机驱动部分、电流检测部分和速度检测部分,下面分别加以说明。PLC(西门子S7200)A/DD/A整流运行灯故障灯EM235晶闸管触发板晶闸管板式电路直流电动机处理图3-1 系统总体结构图3.1.1 CPU主机部分CPU222可单机工作,也可进行I/O和功能块的扩展。通过扩展口
27、用扁平数据线将CPU222与模拟量扩展块EM235连接,实现模拟量的输入和输出。进行扩展时,每个扩展模块的组态地址编号取决于各模块的类型和该模块在扩展链中所处的位置。CPU222应用220V交流电源,EM235电源由CPU222提供。3.1.2 电机驱动部分CPU222将速度值传送给模拟量扩展模块EM235的缓冲器内,再传送到中间寄存器,经光电隔离后进入D/A转换器。D/A转换器分辨率为12位,是完全可以满足输出控制要求的。D/A转换结束后,输出010V模拟电压给晶闸管触发板的电压输入端。直流电动机为15kw,220V,1500r/min。晶闸管触发板实际上就是把触发板电路各元器件安装在印刷线
28、路板上,实现以较小的信号控制功率较大的设备。晶闸管触发板选择SXZL型三相整流触发板,其采用高性能移相触发电路TC787,是集同步信号检测及脉冲变压器输出单元于一体,具有恒压或恒流输出功能的三相整流系统的触发控制单元。为了使主电路的三相全控桥的各相触发脉冲与晶闸管阳极电压保持严格的相位关系,控制系统要设置专门的同步电路。晶闸管触发板具有同步信号检测功能,三相电压经变压器输入晶闸管触发板。经过处理后组成6个状态:001-101-100-110-010-011,“1”表示触发对应的晶闸管,“0”表示不触发。三相全控桥式整流电路由三对串联的晶闸管组成,将三相交流电变换成直流电,供给直流电动机。晶闸管
29、触发板控制6只晶闸管触发脉冲的移相,改变每周期内晶闸管的导通时间,从而调节输出直流电压的平均值,进而调节直流电动机转速。电路中的电抗器是为了滤除晶闸管桥式电路的高次谐波干扰,改善电机运行性能。3.2 检测部分3.2.1 电流检测部分电流检测部分是为了实现电流环的闭环控制,由电流互感器、二极管整流电路和A/D转换电路组成。利用电流互感器从三相电源引出电流,将大电流转换为小电流。经二极管整流电路整流后变为直流,送给EM235。EM235内部的A/D转换器分辨率为12位,输入电流范围为020mA,电压范围为010V。A/D转换器将电流模拟量转变为数字量,传送给CPU222。电流信号一般采用电流互感器
30、或霍尔传感器来测量。1、 电流互感器电流互感器就是初次级绕组通过铁芯进行电磁耦合,初次级电流比与匝比相同。用于测量40-20kHZ的正弦波电流。测量精度一般为比差0.1%,比差非线性度0.1%,相位差15分。特点:不需电源,价格便宜,精度高;缺点:不能用于有直流分量场合(某些型号可以带一定直流分量,但直流分量不反映到输出),价格10-30元。2、霍尔传感器初级绕组绕在径向开有缺口的环型(矩形等)铁芯上,霍尔元件置于缺口中。当初级绕组有电流流过时,霍尔元件检测出铁芯中的磁感应强度B的大小(V=KBi,K霍尔元件灵敏度,B磁感应强度,i霍尔元件的控制电流。)该瞬时电压与初级绕组瞬时电流是线性关系。
31、对该电压(mV级)进行放大输出,就是跟踪输出型直检式霍尔电流传感器,也可以转换成标准信号输出。用于测量DC-1kHz的各种波形电流。由于输出电压与控制电流成正比,恒流源的稳定性很关键,磁路中的剩磁对输出有教大影响。测量精度一般为1%,非线性度0.5%,响应速度10S,跟踪速度di/dt 50A/S。特点:需提供12V电源,结构简单,可以测量各种波形电流;缺点:温漂大,精度低一些。价格50-100元。综上,双闭环调速系统中电流检测的应该选用的方法是用电流互感器作为电流反馈信号的检测器。在三相桥式整流电路中,交流侧的电流与直流整流电路之间的关系如下: (3.1)因此测量交流电流的大小同样可以反应直
32、流整流电流的大小。三相分别用三个电流互感器,再经过桥式整流及滤波后输出直流电压Ui。主回路为三相全控桥,电流反馈信号整流也为三相桥式电路,因此电流反馈信号波形与主回路波形具有相同的重复频率,无须很大的滤波环节来滤平反馈信号。3.2.2 速度检测部分速度检测部分是为了实现速度环的闭环控制,由光栅传感器和信号处理电路等组成,信号处理包括整形电路和放大电路等。转速检测的精度和快速性对整个控制系统的静、动态指标影响非常大。光栅盘刻线数为1024线,它产生的脉冲列频率与电动机转换成固定的比例关系。光栅传感器将角位移转换成电脉冲,由计数器统计脉冲的个数,每转能检测到的脉冲的多少将直接影响角位移的分辨精度。
33、整形电路使脉冲信号升沿符合输入采样要求,放大电路使脉冲信号电平符合PLC高速计数输入电平的要求,高电平不低于15V。转速信号的检测可以用直流测速发电机和光电编码器来测量。1、测速发电机由永久磁铁与感应线圈组成,用电枢获取速度信号。它具有灵敏度高、结构简单等特点,常用于高精度低速伺服系统,也可与永磁式直流电动机组成低速脉宽调速系统。直流测速发电机的输出信号是与输入轴的转速成正比的直流电压信号,信号幅度大,信号调理电路简单。由于输出电压信号有波纹,一般需要配置滤波电路。 2、光电编码器(增量式)主要由旋转孔盘和光电器件组成。它具有体积小、使用方便、测量精度高等特点,常与直流电机配合使用构成脉宽调速
34、系统。增量式光电编码器输出的是与转角成比例的增量脉冲信号,可以通过脉冲计数获得角位置信号,也可以定时取样脉冲数的增量实现角速度测量。因此,可以同时测量转角和转速。通过电阻分压,接入A/D转换器,再接入PLC,有的PLC自带A/D转换器,就不用外接了,使用PLC时配用旋转编码器的效果更好,精度更高,成本也是最低的。因此,在该系统中选择用光电编码器来测量。3.3 数据采集模块模拟信号的采集方式主要有单点采集、有限数量采集以及连续采集等,其中有限数量采集以及连续采集既可用于恒定信号的采集也可用于变化信号的采集。但连续采集的特点是循环使用缓冲区,因此如果采集数据较多时,连续采集循环具有较大的优势。本设
35、计采用了连续采集的方法。调用函数子模块中的创建任务、创建通道、时钟控制、读取数据及终止任务等函数。其中读取数据部分放在一个循环中,设置和终止任务放在循环的外面,这样就避免了在同一个任务中重复设置占用内存;在前面板上设置合适的采样通道、采样率、采样点数以及输入范围的最大值最小值。在进行数据采集时经常会叠加有高频的噪声信号,这时就需要进行低通滤波。一个典型的采集系统由CPU,各种辅助电路组成。需要8片A/D才能实现对32路信号进行同时采集,可以将32路信号分为8组,每组4路信号并分配一个独立的模板, 32路信号需要8个采集模板。采集电路结构如图3-2所示。采集电路数据存储器写控制信号写控制信号写控
36、制信号采集时序电路地址发生器模拟信号图3-2 系统数据采集图在以上采集电路结构中,32路信号由8个采集模板的采集电路同时进行采集。采集时序电路为个模板提供相同的采集控制信号,根据采集控制时序,地址发生器产生递增的存储器地址,写信号发生器对应于采集控制时序产生存储器写信号,采集电路产生的结果数据在写信号控制下写入地址发生器产生的地址对应的存储器单元中。采集数据存储器位于各采集模板上。3.3.1 PLC输入/输出端口1、I/O系统的功能与组成接口是两个系统或两个部件之间的相交接部分,可以是两种硬件设备之间的连接电路,也可以是两个软件之间共同的逻辑边界。I/O接口通常是指主机与外部设备之间设置的硬件
37、电路及其相应的软件控制。一般来讲,不同的外部设备均有其独立的设备控制器,设备控制器需要通过I/O接口与主机进行联系。(1)I/O系统的基本功能 为信息的传输操作选择设备; 在选定的输入输出设备和计算机主机(CPU或内存)之间交换信息。(2)I/O系统的组成 由I/O系统要实现的功能,I/O系统也包括了硬件及其相应的软件。各种外围设备不能与计算机主机直接联系,必须通过I/O系统联接。输入/输出接口:用来完成外围设备与CPU交换信息时在速度、代码形式上的相互匹配。在CPU中,数据的传送速度是纳秒级的,而外围设备的速度则是毫秒级的,最快是微秒级的,两者相差悬殊。CPU中的二进制数据是并行传输的,并且
38、有标准的电位要求,而外围设备因其种类的不同,其数据的传输方式有串行的,有并行的,还有串并行的。接口部件的功能就是进行外设与CPU之间的信息转换,使其形式上能互相适应,速度上能互相匹配。同时能根据CPU的控制要求,对I/O系统的工作进行控制与检测。接口部件是计算机系统的重要组成部分,不同的输入输出方式,不同的系统结构形式,都影响接口部件的组成。而接口部件的质量好坏,也将直接影响计算机系统的性能。2、通道的工作过程通道的工作过程可分为启动通道、数据传输、通道程序结束三个部分。(1)启动通道在用户程序中使用访管指令进入管理程序,由CPU通过管理程序组织一个通道程序,并启动通道。广义指令由一条访管指令
39、和若干个参数组成,访管指令的地址码部分实际上是这条访管指令要调用的管理程序入口地址。当用户程序执行到要求进行输入输出操作的访管指令时,产生自愿访管中断请求。CPU响应这个中断请求后,转入管理程序入口。管理程序根据广义指令提供的参数,如设备号、交换长度和主存起始地址等信息来编制通道程序,在通道程序的最后,用一条启动输入输出指令来启动通道开始工作。(2)数据传输通道处理机执行CPU为它组织的通道程序,完成指定的数据输入输出工作。通道被启动后,CPU就可以退出操作系统的管理程序,返回到用户程序中继续执行原来的程序,而通道开始传输数据。(3)通程序结束当通道处理机执行完通道程序的最后一条通道指令“断开
40、通道指令”时,通道的数据传输工作就全部结束了。通道程序结束后向CPU发出中断请求。CPU响应这个中断请求后,第二次进入操作系统,调用管理程序对输入输出中断进行处理。如果是正常结束,管理程序进行必要的登记等工作;如果是故障、错误等异常情况,则进行例外情况处理。然后CPU返回到用户程序继续执行。3.3.2 用于PLC的输入/输出模块PLC输入模块用来接收生产过程的各个参数。PLC输出模块用来送出可编程控制器运算后得到的信息,并通过机外的执行机构完成工业现场的各类控制。(执行结果输出)PLC的输入/输出模块的特点:有良好的抗干扰的能力;能满足工业现场各类信号的匹配要求。计算机输入输出系统(I/O系统
41、)的功能是完成计算机系统与外部世界的联系,它与计算机主机的速度、处理能力、实用性、兼容性等各项性能都有十分密切的关系如图3-3。下面详细介绍。程 序输 入 设 备计算机数字控制设备输 出 设 备可编程控制器主轴控制单元主轴电机机 床进给电机位 置检测器主轴控制单元图3-3 系统输入输出框图3.3.3 采集时序控制电路在每个独立采集模板的采集电路中,包含一个AD684和AD7821,可以同时采集4路信号。4路信号V0V3在采集控制信号SHC1和SHC2的控制下进行同时采样,并在采样保持后由A/D转换器分时转换为数字信号,同时保存在存储器中。采集时序控制电路产生采集过程中所需的各种控制时序信号,采
42、集所需的基本时序由定时器INTEL8253产生。3个基本时序为NSH,OSH和ADC,其中NSH和OSH分别为普通采样时序和政教采样时序,ADC为A/D转换控制时序。定时器时钟使用控制时钟CLK,频率为5MHz;G门控制信号用于控制采集过程的开始和结束。设备开始工作时,工作程序在初始化阶段对定时器进行设置,3个基本时序就已经产生,它们为周期性的脉冲信号;采集基本时序周期等于采样周期,按正交采样的需要,OSH比NSH迟后1/4个采样周期。此时G为1,采样时序信号未产生。采集工程开始时,工作程序产生的SH START使G变为0,NSH按采集要求整形产生普通采样时序SHC1。同时根据采集方式设置产生
43、SHC2。ADC信号与采集时序进行同步,经整形后产生A/D转换的自动脉冲A/D START。非正交方式采集时,ADC由正常采样时序NSH启动并同步,采样控制时序SHC1S和SHC2完全一样。采集过程中,由A/D转换结束时序信号控制写控制信号发生器产生存储器写信号,控制采集地址发生器产生的递增的存储器地址,将采集结果数据写入由采集地址制定的存储器单元中。采集电路提供了一个采集状态口,工作程序可读取状态口了解采集过程的当前状态。在采集工作结束时,工作程序控制定时器产生SH END,使G为0,采集过程结束。同时对32路信号采集,则采样时间较短,在实际工作中,如需增加采样时间,则可采用接续采集的方式,
44、也就是由几个通道来采集一路信号。3.3.4 正交采用定时器产生了两个采样基本时序NSH和OSH,其中OSH比NSH延迟1/4个采样周期。在正交采样时,对NSH整形产生SHC1,对OSH整形产生SHC2,SHC2比SHC1延迟1/4个采样周期,在前面模板采集电路结构中,正交采样时,将两路信号合并作为一路正交信号,这样,最多可正交采样16路信号。A/D转换启动脉冲由SHC2同步。这就是保证了在延迟和非延迟两路信号采样保持完成以后,才开始进行A/D转换。3.3.5 模块量混合模块EM235EM235具有4路模拟量输入和1路模拟量输出。它的输入信号可以是不同量程的电压或电流。其电压、电流的量程是开关S
45、W1、SW2到SW6设定。EM235有1路模拟量输出,其输出可以是电压也可以是电流。3.4 晶闸管电动机电路设计晶闸管电动机电路中,采用三相桥式全控整流电路。来自体统母线的三相交流电经断路器通过整流变压器向晶闸管供电,为了减少高次谐波对电网的不良影响,变压器采用/Y接法,整流主电路采用三相全桥式整流电路。当晶闸管的阳极和阴极之间成正向电压并且门极加触发信号晶闸管导通,并且去掉门极的触发信号晶闸管依然维持导通。当晶闸管的阳极和阴极之间承受反向电压并且门极不管加不加触发信号晶闸管关断 。3.4.1 整流变压器的设计对于三相桥式整流电路,变压器副边相电压: (3.2)副边有效电流: (3.3)变压器额定视在功率: (3.4)3.4.2 晶闸管的保护晶闸管的保护电路,大致可以分为两种情况:一种是在适当的地方安装保护器件,例如,RC阻容吸收回路、限流电感、快速