课程设计(论文)10000m3立式储油罐结构设计.doc

上传人:仙人指路1688 文档编号:4068842 上传时间:2023-04-03 格式:DOC 页数:27 大小:686.50KB
返回 下载 相关 举报
课程设计(论文)10000m3立式储油罐结构设计.doc_第1页
第1页 / 共27页
课程设计(论文)10000m3立式储油罐结构设计.doc_第2页
第2页 / 共27页
课程设计(论文)10000m3立式储油罐结构设计.doc_第3页
第3页 / 共27页
课程设计(论文)10000m3立式储油罐结构设计.doc_第4页
第4页 / 共27页
课程设计(论文)10000m3立式储油罐结构设计.doc_第5页
第5页 / 共27页
点击查看更多>>
资源描述

《课程设计(论文)10000m3立式储油罐结构设计.doc》由会员分享,可在线阅读,更多相关《课程设计(论文)10000m3立式储油罐结构设计.doc(27页珍藏版)》请在三一办公上搜索。

1、设计题目10000m3立式储油罐结构设计技术参数:直径 32400mm 长度 12150mm 材质 16MnR 壁厚 10mm,12mm,14mm设计任务:1.写出该结构的几种设计方案2.强度计算及尺寸选择3.绘制结构设计图4.撰写主要工艺过程5.撰写设计说明书工作计划与进度安排:1查阅资料 2天2设计计算并撰写设计说明书 5天3上机绘图 4天4答辩 1天指导教师(签字): 年 月 日 专业负责人(签字): 年 月 日学院院长(签字): 年 月 日课程设计任务书1 储罐及其发展概况油品和各种液体化学品的储存设备储罐是石油化工装置和储运系统设施的重要组成部分。由于大型储罐的容积大、使用寿命长。热

2、设计规范制造的费用低,还节约材料。20世纪70年代以来,内浮顶储油罐和大型浮顶油罐发展较快。第一个发展油罐内部覆盖层的施法国。1955年美国也开始建造此种类型的储罐。1962年美国德士古公司就开始使用带盖浮顶罐,并在纽瓦克建有世界上最大直径为187ft(61.6mm)的带盖浮顶罐。至1972年美国已建造了600多个内浮顶罐。1978年国内3000m3铝浮盘投入使用,通过测试蒸发损耗标定,收到显著效果。近20年也相继出现各种形式和结构的内浮盘或覆盖物1。世界技术先进的国家,都备有较齐全的储罐计算机专用程序,对储罐作静态分析和动态分析,同时对储罐的重要理论问题,如大型储罐T形焊缝部位的疲劳分析,大

3、型储罐基础的静态和动态特性分析,抗震分析等,以试验分析为基础深入研究,通过试验取得大量数据,验证了理论的准确性,从而使研究具有使用价值。近几十年来,发展了各种形式的储罐,尤其是在石油化工生产中大量采用大型的薄壁压力容器。它易于制造,又便于在内部装设工艺附件,并便于工作介质在内部相互作用等。2 设计方案2.1 选择设计方法2.1.1 正装法此种方法的特点是指把钢板从罐底部一直到顶部逐块安装起来,它在浮顶罐的施工安装中用得较多,即所谓充水正装法,它的安装顺序是在罐低及二层圈板安装后,开始在罐内安装浮顶,临时的支撑腿,为了加强排水,罐顶中心要比周边浮筒低,浮顶安装完以后,装上水除去支撑腿,浮顶即作为

4、安装操作平台,每安装一层后,将上升到上一层工作面,继续进行安装。2.1.2 倒装法先从罐顶开始从上往下安装,将罐顶和上层罐圈在地面上安装,焊好以后将第二圈板围在第一罐圈的外围,以第一罐圈为胎具,对中点焊成圆圈后,将第一罐圈及罐顶盖部分整体吊至第一、二罐圈相搭接的位置,停于点焊,然后在焊死环焊缝。用同样的方法把下面的部分依次点焊环焊,直到罐底板的角接焊死即成。2.1.3 卷装法将罐体先预制成整幅钢板,然后用胎具将其卷筒,在运至储罐基础上,将其卷筒竖起来,展成罐体装上顶盖封闭安装而建成。见几种:护坡式基础、环墙式基础、外环墙式基础、特殊构造的基础。根据比较选用,护坡式基础2。2.2 尺寸的选择根据

5、经济尺寸计算,,,体形系数为,符合要求2.3 材料的选择根据GB50341-2003_立式圆筒形钢制焊接油罐设计规范.来选取(1) 罐壁:钢板16MnR,尺寸为300020000mm,GB6654,在热轧正火下使用,公称板厚为616mm,温度-20时的许用板厚为34mm,许用应力为163MPa,(3) 锻件:16Mn,JB4726,在正火或回火加正火下使用,公称板厚为300mm,温度20时,许用应力为150MPa,(4) 螺母:20或25钢,GB/T699(5) 螺栓: 35GrMoA,GB3077,温度 P0,所以在罐壁上不需要设置加强圈。故满足要求。3.3.3 液面晃动波高计算罐内液面晃动

6、波高; ;式中浮顶影响系数,取0.85;阻尼修正系数,当大于10s时,取=1.05;地震影响系数,取0.23; 故取=1.85-0.08=1.85-0.085.58=1.4;3.3 罐壁结构3.3.1 截面与连接形式罐壁的纵截面由若干个壁板组成,其形状为从下至上逐级减薄的阶梯形,一般上壁板的厚度不超过下壁板的厚度,各壁板的厚度由计算可得,按标准规范,16MnR的最小厚度为6mm,为由于该罐壁是不等壁厚度的且较厚,因此各板之间采用对接,这样可以减轻自重。罐壁的下部通过内外角焊缝与罐底的边缘板相连,上部有一圈包边角钢,这样既可以增加焊缝的强度,还可以增加罐壁的刚性。在液压作用下,罐壁中的纵向应力是

7、占控制地位的。即罐壁的流度实际上是罐壁的纵焊缝所决定的。因而壁板的纵向焊接接头应采用全焊透的对接型。 为减少焊接影响和变形,相邻两壁板的纵向焊接接头宜向同一方向逐圈错开1/3板长,焊缝最小间距不小于1000mm。底圈壁板的纵向焊接接头与罐底边缘板对接焊缝接头之间的距离不得小于300mm。罐壁的环向焊接接头形式较多,主要为对接。底层壁板与罐底边缘板之间的连接应采用两侧连续角焊。在地震设防烈度不大于7度的地区建罐,底层壁板与边缘壁板之间的连接应采用如图的焊接形式,且角焊接头应圆滑过渡,而在地震小于7度的地区可取K2=K13 。 图3.4底层壁板与边缘板的焊接3.3.2 壁板宽度壁板宽度越小,材料就

8、越省。但环向接头数就越多,增加安装工作量。我国一般取壁板宽度不小于1600mm。根据GB709-2006选择B类,板宽3000mm,长度20m。4 罐底设计4.1 罐底的应力计算 中幅板的薄膜力 (4.1)罐壁与边缘板之间的约束弯矩 (4.2)式中t边缘板厚(mm); 罐壁第一圈壁板特征系数,; 泊松比,0.3;R储罐半径,16.20m;储罐第一圈厚度,14mm; 中幅板的平均厚度,6mm;底板上的液压高度,12.15m; P作用在罐底上的储液压力,P= ; 储液密度,720Kg/m3 ;L边缘板受弯宽度,30.00m;D边缘板弯曲刚度;罐壁边缘板特征系数,; ; ; 边缘板上表面的径向应力分

9、布为 (4.3)边缘板上表面的环向应力分布为 (4.4)式中-边缘板受弯区域内任一点的弯矩 如图4.3所示的力的平衡关系图4.3 力的平衡关系图再分别求出及的弯矩Mx 当x=0时 当x=时 当时 所以当x=时,有最大值且所以 故均为安全5 罐顶设计5.1拱顶结构及主要的几何尺寸拱顶罐是目前立式圆柱形储罐中使用最广泛的一种罐顶形式,拱形的主体是球体,它本身是重要的结构,储罐没有衍架和立柱,结构简单,刚性好,承压能力强。球面由中小盖板瓜皮板组成,瓜皮板一般做成偶数,对称安排,板与板之间相互搭接,搭接宽度不小于5倍板厚,且不小于25mm实际搭接宽度多采用40mm罐顶的外侧采用连接焊,内侧间断焊,中心

10、盖板搭在瓜皮板上,搭接宽度一般取50mm,顶板的厚度为46mm。用包边角钢连接的拱顶只有一个曲率,所以又称球顶。这种结构形式在拱顶与罐壁的连接处,(即拱脚)边缘应力较大,为防止油罐破坏装油高度不宜超过拱脚,即拱顶部分不能装油,但球顶罐制作方便,因而得到较广泛的应用。(1) 拱顶的球面半径一般取Rn=0.81.2D式中D-储罐直径,32.4m;取Rn=1.0D=32400mm按表5-2,顶板厚度为5mm,带肋(2) 0 、D2 、a、b、根据图可知,有 sin0 = 0 =30 sin0 = 式中D2 -中小孔直径,查表得D2 =1000mm sin0 = 0 =0.6a-取25mm b-取30

11、 mm5.2 扇形顶板尺寸扇形顶板块数n最好为偶数,选择n=20,扇形顶板小头的弧长CD不得小于180 mm, 则瓜边板的展开式状。R1=Rtg0 =32400tg30=18706mmR2=Rtg=32400tg0.6 =3393mm=mmmm5.3 包边角钢(1)包边角钢与罐顶板之间采用连接较弱,仅需在外侧采用单面连续焊,以保证储罐的密封,焊脚高度不宜大于顶板厚度的3/4,且不大于4mm。(2)根据SH3046规定储罐所应采用最小包边角钢见表5.11。表5.1 包边角钢最小尺寸储罐内径D1 包边角钢最小尺寸,20D89,故需要开孔补强。补强设计:对筒体上接管为6008的开孔进行补强补强设计方

12、法:单孔补强开孔处壳体材料类型:板材壳体材料:16Mn壳体材料在设计温度下的许用应力:230Mpa内径:28000mm接管腐蚀裕量:1mm接管厚度负偏差:0.3mm接管材料:16Mn接管材料在设计温度下的许用应力:230Mpa接管材料在常温下的许用应力:230Mpa接管焊接接头系数:1补强结构:无补强结构接管和壳体连接结构形式:镶嵌式接管计 算 方 法 : GB150-1998 等 面 积 补 强 法, 单 孔 开孔直径 d=d0+2Ct= 602.6mm补强区有效宽度 B=2d=2602.6=1205.2mm接管材料强度削弱系数 fr :1.0接效外伸长度 h1=minmm管效内伸长度 h2

13、=min根据外压圆筒稳定性计算方法,计算得到圆筒和接管的计算厚度,接管的有效厚分别为d=602.6mm和11mm,开孔削弱所需的补强面积A=0.5d+2e(1- fr)=3314 mm壳体多余金属面积 A1=(B-d)(de-d)-2det(de-d)(1- fr)=964 mm接管多余金属面积 A2=2h1(det-d)-2h2(det-C2)fr=278 mm补强区内的焊接面积A3 :6x6=36 mm(焊角取6mm)Ae=A1+A2+A3=1278 mm需要另加补强面积A4=A-Ae=2036 mm采用补强圈补强,选用标准补强圈(JB/T4736-2002),外径980mm,则补强圈计算

14、厚度为 2036/(980-600)=5.35mm 取整为6mm6.2 通气孔用于贮存不易挥发介质的固定顶储罐上在储罐顶部靠近罐顶中心处安装,起呼吸作用。表6.3 通气孔规格尺寸(mm)规格dDD1d1EHn8通气孔的补强计算:对筒体上接管为2008的开孔进行补强补强设计方法:单孔补强开孔处壳体材料类型:板材壳体材料:16Mn壳体材料在设计温度下的许用应力:230(MPa)内径:28000接管腐蚀裕量:1接管厚度负偏差:0.3接管材料:16Mn接管材料在设计温度下的许用应力:230(MPa)接管材料在常温下的许用应力:230(MPa)接管焊接接头系数:1接管和壳体连接结构形式:镶嵌式接管计算方

15、法GB150-1998等面积补强法,单孔 开孔直径 d=d0+2Ct= 202.6补强区有效宽度 B=2d=2202.6=405.2接管材料强度削弱系数fr :1接效外伸长度h1=min管效内伸长度 h2=min根据外压圆筒稳定性计算方法,计算得到圆筒和接管的计算厚度,接管为d=202.6和10,开孔削弱所需的补强面积A=0.5dd+2dde(1- fr)=1114 壳体多余金属面积 A1=(B-d)(de-d)-2det(de-d)(1- fr)=202 接管多余金属面积 A2=2h1(det-d)-2h2(det-C2)fr=69补强区内的焊接面积A3 :6x6=36 (焊角取6)Ae=A

16、1+A2+A3=307需要另加补强面积A4=A-Ae=807采用补强圈补强,选用标准补强圈(JB/T4736-2002),外径400,则补强圈计算厚度为 807/(400-200)=46.3 贮罐进出液口进液口开在罐顶,据罐壁750,孔径取为300,罐侧壁中心线距底350,出液口开在罐壁第一圈的位置,距罐底350,孔径取为300补强计算:对筒体上接管为3008的开孔进行补强补强设计方法:单孔补强开孔处壳体材料类型:板材壳体材料:16Mn壳体材料在设计温度下的许用应力:230 (MPa)内径:28000接管腐蚀裕量:1接管厚度负偏差:0.3接管材料:16Mn接管材料在设计温度下的许用应力:230

17、 (MPa)接管材料在常温下的许用应力:230(MPa)接管焊接接头系数:1接管和壳体连接结构形式:镶嵌式接管计算方法:GB150-1998等面积补强法,单孔 开孔直径 d=d0+2Ct= 302.6补强区有效宽度 B=2d=2302.6=605.2接管材料强度削弱系数 fr :1接效外伸长度 h1=min管效内伸长度 h2=min根据外压圆筒稳定性计算方法,计算得到圆筒和接管的计算厚度,接管的有效厚分别为d=302.6和10,开孔削弱所需的补强面积A=0.5dd+2dde(1- fr)=1513壳体多余金属面积 A1=(B-d)(de-d)-2det(de-d)(1- fr)=302接管多余

18、金属面积 A2=2h1(det-d)-2h2(det-C2)fr=84补强区内的焊接面积A3 :6x6=36 (焊角取6)Ae=A1+A2+A3=422需要另加补强面积A4=A-Ae=1091采用补强圈补强,选用标准补强圈(JB/T4736-2002),外径400,则补强圈计算厚度为 1091/(400-300)=10.91 取整为116.4 法兰和垫片 6.3 接管和法兰尺寸 (mm) 名称公称直径DN钢管外径法兰焊端外径法兰外径D螺栓孔中心圆直径K螺栓孔直径L螺栓孔数量n(个)螺栓Th法兰厚度C法兰颈法兰高度H法兰质量NSHR出液口300329B4454002212M20263427.11

19、6127818进液口300329B4454002212M20263427.116127818人孔600530B6707703620M33546902330129056液位计口3238B140100184M1218402.364402安全阀口80108B220180188M16201313.6128524.5注:1:包覆金属材料为纯铝板,标准为GB/T 3880,代号为L3。 2:填充材料为有机非石棉纤维橡胶板。3:垫片厚度均为3。 查HG/T 20609-2009钢制管法兰用金属包覆垫片,得: 6.4 垫片尺寸表 管口名称 公称直径 内径D1 外径D2出液口 300 352 400进液口 30

20、0 352 400人孔 600 862 980液位计口 32 61.5 82安全阀口 80 109.5 1426.5 液面计6.5 液面计类型和适用范围类型 适用范围 选用标准玻璃管式液面计 PN1.6MPa,介质流动性较好,t=0200 HG/T21592-19956.6 盘梯 由于容器高度较高,需设盘梯。7焊接结构设计7.1 焊缝的布置焊缝布置原则:1焊缝位置应尽量对称,尽量分散 2焊缝应尽量避开应力集中和最大应力位置 3焊缝应避开机械加工面 4焊缝要能够焊接、便于焊接、并能保证质量 5焊缝的布置还应照顾到其他工序的方便与安全罐壁焊缝的布置: 每块钢板的规格为300050000mm,罐的直

21、径为21.68m,高度为8.13m,罐的周长为68m,所以可根据板长条件设计纵焊缝的数量,2条环焊缝,为减少焊接影响和变形,相邻两壁板的纵向焊缝宜向同一方向逐圈错开1/3板长,焊缝最小间距不小于1000mm。罐底的焊缝布置:罐底的中幅板大部分是用整块钢板拼接而成。四周与罐壁圈相连接 的一圈为边缘板。中幅板钢板与钢板之间绝大部分是搭接焊缝,只是直接处在罐底圈板下的一部分为对接焊缝,边缘板与壁板之间为丁字接头,里外圈都为环焊缝。其中短焊缝之间要错开200300mm。罐顶的焊缝布置:罐顶由中心板和扇形板组成。中心直径为2000mm,可用一块钢板切成。每一块扇形由两块钢板焊成纵焊缝,扇形板与扇形板之间

22、也是纵焊缝,扇形板与中心板之间焊成环焊缝,与边缘板之间也是环焊缝焊接。7.2 焊接方法表7.1 焊接材料选用表焊接方法焊条/焊丝焊剂埋弧焊H08A,H08MnAHJ430手工电弧焊J507或J5064317.3焊缝顺序在压力容器简体结构中,不允许环缝和纵缝呈十字形相交的焊缝。必须将相邻俩焊缝错开。这样大型的拼版构件可以看成由若干T字形对接焊缝焊接而成。7.3.1罐底的焊接顺序边缘板与罐壁的焊接,顺序是先焊边缘板上的对接焊缝,再焊接边缘板与罐壁最下一圈板之间的环形角焊缝,最后焊边缘板的搭接焊缝。收缩焊缝的焊接时中幅板与边缘板之间的对接焊缝,它的焊接必须是除了配工件处整个储罐的最后一道工序7.3.

23、2 罐顶的焊接顺序 先焊内侧的断续焊缝,后焊外部的连续焊缝。连续焊缝应先焊环向短焊缝,此缝的施焊应由中心向外并采用分段退焊。顶板和包边的角钢的环缝,应由几名焊工均匀分布,站在同一方向分段退焊。7.3.3罐壁的焊接顺序先焊最厚板材之间的短焊缝,既纵焊缝,然后焊底圈壁板与底边缘板之间角焊缝。立焊采用手工电弧焊完成,应在底圈罐壁板纵焊缝后再焊,包边角钢自身连续必须采用全焊透的对接。壁对接焊时要对齐。7.4 焊缝标注在图纸上表示。 参 考 文 献1 徐英,杨一凡,朱萍等.球罐和大型储罐.第一版.化学工业出版社,2004.11:158-3032 刘湘秋.常用压力手册.机械工业出版社,2004.11:19

24、-803 吴粤淼.压力容器安全技术手册.机械工业出版社,1989.6:32-904 中国机械工程学会焊接会. 焊接手册 焊接结构 第三卷.机械工业出版社,2001.8:369-894目 录1 储罐及其发展概况12 设计方案22.1 选择设计方法32.2 尺寸选择22.3 材料选择33 罐壁设计43.1 罐壁的强度计算43.2 储罐的风力稳定计算53.3 罐壁结构74 罐底设计94.1 罐底的应力计算95 罐顶设计125.1 拱顶结构及主要的几何尺寸125.2 扇形顶板尺寸135.3 包边角钢136 贮罐附件及其选用146.1 人孔146.2 通气孔166.3 贮罐进出液口186.4 法兰和垫片206.5 液面计21 6.6 盘梯.217 焊接结构设计227.1 焊缝的布置227.2 焊接方法237.3 焊缝顺序237.4 焊缝标注23参 考 文 献24

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 办公文档 > 其他范文


备案号:宁ICP备20000045号-2

经营许可证:宁B2-20210002

宁公网安备 64010402000987号