利用污水源与地源技术供热制冷贷款节能改造项目可行性研报告.doc

上传人:文库蛋蛋多 文档编号:4070402 上传时间:2023-04-03 格式:DOC 页数:65 大小:755KB
返回 下载 相关 举报
利用污水源与地源技术供热制冷贷款节能改造项目可行性研报告.doc_第1页
第1页 / 共65页
利用污水源与地源技术供热制冷贷款节能改造项目可行性研报告.doc_第2页
第2页 / 共65页
利用污水源与地源技术供热制冷贷款节能改造项目可行性研报告.doc_第3页
第3页 / 共65页
利用污水源与地源技术供热制冷贷款节能改造项目可行性研报告.doc_第4页
第4页 / 共65页
利用污水源与地源技术供热制冷贷款节能改造项目可行性研报告.doc_第5页
第5页 / 共65页
点击查看更多>>
资源描述

《利用污水源与地源技术供热制冷贷款节能改造项目可行性研报告.doc》由会员分享,可在线阅读,更多相关《利用污水源与地源技术供热制冷贷款节能改造项目可行性研报告.doc(65页珍藏版)》请在三一办公上搜索。

1、利用污水源与地源技术供热制冷贷款节能改造项目可行性研究报告目录摘 要5第 1 章 前 言61.1 项目背景61.2 项目介绍71.2.1 项目位置81.2.2 项目技术方案81.2.3 项目实施进度81.2.4 项目投资91.3 项目法人介绍91.4 项目建设目标10第2章 技术方案与节能及经济环境分析112.1 地源热泵技术应用的可行性研究112.1.1 地源热泵介绍112.1.2 土壤热物性132.1.3 地源热泵系统利用条件142.2 污水源热泵技术应用的可行性研究142.2.1 污水源热泵介绍142.2.2 污水源热泵项目实施的有利条件152.3 设计参数152.3.1 室外设计参数:

2、152.3.2 空调系统室内设计计算参数:172.3.3公共建筑主要房间设计新风量182.3.4 主要房间换气次数:192.4 地源热泵项目设计流程 (以四号能源中心为例)192.4.1工程概况202.4.2既有系统的实测能耗232.4.3 建筑物的预测负荷与预测能耗282.4.4 设备选择和地埋管换热器的热平衡分析302.4.5项目设计方案和建设费用322.4.6转换系数和收费标准332.4.7每年能源费用和节省费用352.4.8 环境分析362.5 污水源热泵项目设计流程382.5.1 建筑物描述382.5.2 既有系统的实测能耗392.5.3 系统设计预测能耗402.5.4 设备选型41

3、2.5.5初投资计算422.5.6 年运行费用及节能量计算432.5.7 环境影响44第3章 改造系统概况443.1 地源热泵系统443.1.1 既有系统概况443.1.2 既有系统实测能耗概况463.1.3 方案设计概况473.1.4 能耗、经济和环境分析概况493.2污水源热泵563.3 项目总节能量60第4章 节能措施与管理614.1 建筑维护结构的节能措施614.2 运行管理的监考策略614.3 地源热泵系统的过载保护措施62第 5 章 结 论63致 谢64参考文献65概 述XX市XX市x公司成立于2010年,是具有独立法人资格的有限责任公司,注册资本金3000万元。公司现有高级专业技

4、术专家 5人,工程师及具有国家注册咨询工程师执业资格的17人;助理工程师及相应职称的专业人员 6人;此外,还聘请不同科研机构的部分专家教授及地方企业的节能专家作为公司专业支持人员。公司的短期目标是在XX市应用可再生能源系统(例如地源热泵系统和污水源热泵系统)以提高能源效率和解决能源需求问题,其长期目标是在XX市不断地使用可再生能源为更多的客户服务。 为了实现这些目标,公司需向欧行贷款1300万欧元,这些钱主要用于当前改造项目的花费,包括购买设备,工程安装及土建等,20年内还清该债务。公司的整体目标是满足要求能源供应市场,并在服务数量上保持稳定增长,以此维持公司数十年。前期工作提高了公司的声誉,

5、并指出了公司被很多人推荐和选择是因为其卓越的质量和服务。 市场研究显示,XX市的能源需求增加了经济的发展和生活水平的提高,这也就增加了既有建筑改造的潜力空间,XX市联能科技有限公司将致力于这块市场的开发。 第 1 章 前 言1.1 项目背景XX市位于山东半岛中部,地跨北纬3541 3726,东经1181012001,东邻青岛、烟台市,西接淄博、东营市,南连临沂市,北濒渤海莱洲湾。辖A区、B区、C区、D区,E、F、G、H、I、J市(县级),K、L县。总面积25544平方公里,总人口226万。据2010年XX市市过敏经济和社会发展统计公报显示,2010年XX市市生产总值(GDP)完成3990.9亿

6、元,按可比价格比上年增长了13.3%;其中第一产业增加值390.5亿元,增长4.3%;第二产业增加值1590.3亿元,增长13.2%;第三产业增加值1740.1亿元,增长16.0%。一、二、三产业分别拉动GDP增长0.4、7.7、5.2个百分点。按常住人口计算,人均GDP达到34950元,约折合5172美元,比上年增长12、1%。三次产业结构调整为10.69:55.66:33.65。XX市有四季气候,炎热和潮湿的夏天,寒冷而干燥的冬天。日平均温度范围从1月份的-2.9C到7月的26.2C,年平均为12.49C。因此,该地区有大量的冷热需求。山东省地方标准居住建筑节能设计标准条文解释中提到,住宅

7、空调耗能量一般为建筑耗能量的15%左右,如果考虑到生活热水等其他供热负荷,则XX市地区居住建筑全年供热能耗要比空调能耗多出3-4倍还要多。通过现场调研与实地数据采集,所有项目建筑由集中供热站供热,由冷水机组或是空气源热泵制冷。通过现场调研,发现了这些项目建筑既有冷热源的一些严重问题:(1) 城市集中供热热源不足 近几年,XX市市发展很快,城市建设规模也逐年增大,目前XX市的城市集中供热管网的基础建设较差,不能满足全部建筑面积的供暖需求,因此目前XX市市存在较大的供热缺口,亟需寻找合适的低品位热源来满足居住及公共建筑的冬季供暖需求。(2) 空气源热泵冬季供暖效率低 目前一些既有项目使用空气源热泵

8、提供供热和制冷。空气源热泵在冬季寒冷条件下使用存在结霜除霜的问题,系统运行效率较低,在极端气候条件下效率甚至低于1.5。(3) 夏季空调系统热污染严重 小型燃煤锅炉消耗大量的一次能源,效率低,对环境污染比较严重,需要进行节能改造。(4) 冷水机组引起的问题计划改造的项目中公共建筑多采用空气源模块式冷水机组或水冷式冷水机组。与地源热泵相比,风冷热泵与冷水机组的能耗均大于地源热泵的能耗,而且水冷冷水机组必须配冷却塔,占用楼顶面积,且不美观。对于开式冷却循环水系统,由于冷却水吸收热量后,与空气接触,CO2逸入空气中,水中溶解氧和浊度增加,造成冷却循环水系统有4大问题:腐蚀、结垢、菌藻滋生及污泥。如果

9、不对水质进行处理将严重损坏制冷设备,大幅度降低热交换效率,造成能源的浪费。此外,冷水机组和风冷机组还将会加剧城市热岛效应。基于既有系统存在的上述问题,有必要对既有系统进行改造,以进一步提高其能源效率。地源热泵系统和污水源热泵系统作为有利的替代能源,分别利用浅层地热能和污水作为冷热源实现冬季供热、夏季空调。XX市当地政府积极响应国家节能减排政策,提出了利用尽可能多的可再生能源为建筑物供暖和空调,来替代原有的低水平的能源形式。本次改造项目面积为1616.56平方千米,包括政府办公楼、会议中心、办公建筑、公寓、商场、学校等。1.2 项目介绍1.2.1 项目位置 本次能源系统改造项目位于A区,能源中心

10、有13个(如图1.1所示),其中地源热泵12个,污水源热泵项目一个。该区域市政配套服务设施齐全,通讯、交通、十分方便,是XX市市居住规划建设的重点整改地段。XX市市区地层以粘性土和砂土为主(50至100米左右),其下基岩以中新代火山岩、沉积岩为主。粘土体全年温度相对变化稳定,一般为14.516.5。同时,XX市市地下水温度为1616.5,含有巨大的地热潜能。1.2.2 项目技术方案 本项目利用地源热泵和污水源热泵供暖空调,其中污水源热泵项目承担632.47 km2的冬季供暖面积,夏季252 km2的空调面积,地源热泵系统承担7632.09 km2的供暖空调面积。欧行贷款主要用于购买地源热泵系统

11、及设备,以替代原来的锅炉。1.2.3 项目实施进度项目拟分步实施。本项目建设期为3年,计划于2014年5月份进行该区域内既有建筑改造,同时进行现有管网改造设计和管网敷设;2014年完成部分既有建筑节能和分户供热计量改造并投入使用;2015年4月启动热水管网改造和换热站改造,同时进行热泵系统建设;2015年11月份部分投入供热;预计2016年4月份全部完成,11月正式投入生产。能源管理合同正与业主协商中,将在系统改造前签订,其合同草本见附录1-1至附录1-3。1.2.4 项目投资本项目计划总投资2.522亿元,其中地源热泵项目总投资19118万元,向欧行贷款1300万欧元,其余的由XX市XX市x

12、公司自筹;污水源热泵项目总投资为6102万元,不申请欧行贷款,全部由该公司自筹。1.3 项目法人介绍XX市XX市x公司成立于2010年,是具有独立法人资格的有限责任公司,注册资本金3000万元。该公司以先进的技术、工艺和服务质量及管理在能源应用与节能服务上享有很高的声誉。公司自成立以来发展飞速,2012年的销售总额为431万,2013年由签订的合同可知销售总额将为1228万元。该公司承担以下业务:1. 城市集中供热项目设计2. 地源热泵、污水源热泵及水源热泵的供热空调项目3. 节能产品的研制和推广等。公司现有高级专业技术专家 5人,其中聘请中科院院士1人及中科院能源所博士1人作技术指导;工程师

13、及具有国家注册咨询工程师执业资格的17人;助理工程师及相应职称的专业人员 6人;此外,还聘请了中科院、青岛理工、XX市市节能检查中心等院校、科研机构的部分专家教授及地方企业的节能专家作为公司专业支持人员。1.4 项目建设目标本项目改造的主要目标是解决XX市地区的供暖能源问题,如果可再生能源利用以解决住宅的供热问题,将大大降低传统的能源消耗。因此,能源改造,主要是冬季的供热问题,将提高系统的稳定性,增加系统的效率,减少CO2的排放量。结合实际情况,冷/热系统的设计是基于既有建筑冷热源及建筑冷热负荷的基础上的。该项目能耗严格执行国家居住建筑节能65%的节能设计标准,积极推动可再生能源在建筑领域中的

14、应用,有效降低建筑能耗,贯彻国家可再生能源法。地源热泵系统和污水源热泵系统COP不低于3.0。本项目将节省14954.15吨标煤,CO2, SO2, NOX 和灰尘的减排量分别为37280.70吨、112.16吨、 56.83吨 和101.69吨。.第2章 技术方案与经济节能环境分析2.1 地源热泵技术应用的可行性研究2.1.1 地源热泵介绍地热能是作为热能存储在地表下的一种能源形式(VDI4640,2000)。它是在几乎每个地方都可用并且依赖于特定的地质热力特性,它可以以多种方式应用,例如发电和区域供热。截止到2009年底,安装浅层地源热泵全世界的数量达到了大约294万,在欧洲2011年超过

15、了100万。地热能能够代替常规能源,并因此作为了的一种能源选择以减少环境污染特别是温室气体。Saner et al. (2010)给出了用地源热泵系统去提供给一个普通欧洲独户住房比常规的燃油锅炉节省了35%二氧化碳排放量。地热能系统在市场上被认为是一种最有效的供热制冷系统。美国环境保护机构把地热称为最有效的能源,并且它是环保清洁、经济的空调系统可用能源。因此,在大多数像XX市的大城市,低焓的地源热泵系统是有主要的优势。地源热泵系统具有如下特点:(1)节能、运行费用低 较深的地层中在未受干扰的情况下常年保持恒定的温度,远高于冬季的室外温度,又低于夏季的室外温度。地源热泵可克服空气源热泵负荷需求越

16、高,效率越低的技术障碍,显著提高效率。高效率意味着消耗一次能源少,运行费用少。(2)环保、洁净 地源热泵系统的运行没有燃烧,没有排烟,大大降低了城镇的大气污染;据调研,由于需输入的少量的电能维持热泵运转,地源热泵由此产生的污染物排放量,比空气源热泵的排放量减少 40以上,比电供暖的减少 70以上;地源热泵系统供冷时省去了冷却塔,避免了冷却塔噪音及霉菌污染,以及对大气产生的热岛效应。同时去掉冷却塔使建筑周边环境更加洁净、优美。 节水省地的地源热泵系统以地下浅层地热能资源为冷、热源,向其吸收或排出热量,从而达到供暖或制冷的作用,既不消耗水资源,也不会对其造成污染;地源热泵系统的地埋管可以直接布置在

17、建筑物的地下空间中,不占使用面积。(3)一机多用 地源热泵系统可供热、空调,一机多用,一套系统可以替换原来的锅炉加制冷机的两套装置或系统;机组紧凑,节省建筑空间,可以灵活安装在任何地方,末端亦可做多种选择;(4)运行可靠 机组的运行情况稳定,几乎不受天气及环境、温度变化的影响,即使在寒冷的冬季制热量也不会衰减,更无结霜、除霜之虑;自动化程度高,系统由电脑控制,能够根据室外气温和室内气温自动调节运行,运行管理可靠性高;无储煤、储油罐等卫生及火灾安全隐患;机组使用寿命长,主要零部件少,维护费用低,主机运行寿命可达到15 年以上;机组自动控制程度高,可无人值守。(5)应用范围广 地源热泵技术在中国最

18、近十年已经发展的很好,通过学习先进的设计/安装技术和在工程实践的施工中不断探索,我们已经建立了详细的施工规范、施工过程和生产了地源热泵系统的相关设备。2.1.2 土壤热物性XX市地质构造主要为粘土与粉质粘土(在100米以内)。粘土层下的岩石层主要是火山石与沉积岩。地下黏土层的常年平均温度约为14.5 16.5。XX市地区地下水水位约在10m左右,水温为16 16.5。据调研,XX市地区约有7608平方公里的面积适合应用地源热泵,约占XX市地区总面积的34%。水文地质条件是决定地源热泵系统初投资的主要因素,岩土热物性测试报告的主要目的是提供土壤的初始温度,土壤的导热系数与热扩散率,以及地下岩土的

19、换热能力等重要参数。为了获得准确的岩土热物性参数,由山东建筑大学地源热泵研究所于2013年11月10-13日对XX市中学进行了岩土热响应测试,共对1个测试孔进行了测试。详细的测试报告见6#井热物性测试报告。 表2-1、表2-2给出了测试孔的测试参数。Table 2.1 测试孔基本参数 项目测试孔项目测试孔钻孔深度(m)180钻孔直径(mm)190埋管形式双U埋管材质PE管埋管内径(mm)25埋管外径(mm)30钻孔回填材料原浆主要地质结构土层Table 2.2 岩土热物性测试结果 测试孔初始温度(C)导热系数 (W/m C)容积比热容 (106J/m3 C)平均值16.01.3131.920回

20、填材料导热系数(W/m C)1.92钻孔内热阻 双U型管0.12 m K/W 经现场勘查,该区域的地质条件适宜钻孔,钻孔费用不高。因此综合考虑,该地区从地质条件,气候条件等角度分析,可列为地源热泵应用的适宜区。2.1.3 地源热泵系统利用条件 本项目共有732094.58 m2规划区域使用地源热泵系统进行冬季供热及夏季空调。主要建筑形式为学校、办公楼、酒店等公共建筑。这些区域内都规划有大型停车场及空地,有足够空间布置地埋管。同时,办公楼、学校等区域对供暖和制冷在使用时间上相对平衡,特别是学校,在最冷月和最热月都在放假,减少了冷、热负荷需求。住宅建筑末端采暖设备均采用地板辐射采暖,供水温度宜采用

21、3550,供回水温差不宜大于10。温度要求与地源热泵的出水温度相符。为地源热泵的改造提供了很好的适应条件。2.2 污水源热泵技术应用的可行性研究 2.2.1 污水源热泵介绍 污水源热泵系统由三个子循环系统构成,即污水(中水)循环、中介水循环和末端循环。系统主要设备有:污水泵、污水(中水)换热器、中水泵、热泵机组及末端泵。具体的工艺流程如下:(1)首先,污水(中水)经过污水泵提升,进入无堵塞高效换热的污水换热器进行放热,将一定温差范围内(5左右)的热量传递给清洁的中介水,再以7左右排放至下游污水处理厂再生水排出系统内排向既定目标,实现污水(中水)循环。(2)然后,中介循环水通过循环泵输送,进入热

22、泵机组地蒸发器进行释热,将从污水那里获取的热量传递给热泵机组,中介水放热后进入污水换热器进行循环吸热,形成封闭循环,即中介水循环。(3)用户供热回水进入热泵机组冷凝器进行提热,将热泵机组从低温那里转化来的高温热量吸收,经过污水源热泵提升至4550左右的热水,通过末端循环泵输送,进入末端散热设备将热量释放给建筑空间,实现末端用户循环。2.2.2 污水源热泵项目实施的有利条件XX市市污水处理厂于2000年10月份建成投产,日处理污水设计规模为10万立方米。本项目通过使用XX市污水处理厂处理后达到国家一级B排放标准的再生水(即中水),经水泵输送进入污水源热泵系统中,通过系统进行热能转移及品位提升,制

23、取出4550左右的热水,经末端循环泵输送进入采暖系统中为建筑供暖。系统运行过程中污水(中水)只进入专用换热器内,采用间接式系统,不污染环境与其他设备或水系统。2012年全年处理污水量约为4400万吨,满足供水要求。冬季最低温度约为12,完全满足本项目632469.3 m2的区域冬季供热条件。2.3 设计参数2.3.1 室外设计参数:Table 2.3 XX市地区的供暖空调的室外设计参数如下: 编号项目参数1地名山东XX市2位置北纬3645东经11911海拔(m)22.13大气压力(hPa)冬季1022.1夏季1000.94年平均温度()12.55室外计算(干球)温度()冬季采暖-7空调-9.3

24、通风-2.9夏季通风30.2空调34.32空调日平均温度296夏季空调室外计算湿球温度()26.87最热月平均温度()25.08室外计算相对湿度(%)冬季空调63最热月月平均81夏季通风639室外风速(m/s)冬季平均3.5夏季平均3.410设计计算用采暖期天数(days)118XX市地区典型年的室外日平均温度,极值温度变化曲线见图6.1 (数据来自建筑负荷计算软件Dest数据库)。图6.1 XX市全年室外日平均温度,极值温度变化曲线2.3.2 空调系统室内设计计算参数:表2.4 空调系统室内设计计算参数建筑类型房间类型夏季冬季温度(C )相对湿度(%)温度(C )相对湿度(%)住宅卧室、起居

25、室26-2860-6518-20公寓卧室26-2860-6518-20起居室26-2860-6518-20客房25-2750-6518-2030办公建筑办公室26-286518-20高级办公室24-2740-6020-2240-55会议室25-276516-18客房26-2860-6518-2030宴会厅、餐厅25-2750-6518-2030大厅、休息厅26-2850-6516-1830接待厅26-2850-6516-1830商业中心购物中心26-2850-6516-1830-50影剧院24-2850-7016-2030学校教室26-286516-18礼堂26-286516-18图书馆25-

26、276516-202.3.3公共建筑主要房间设计新风量Table 2.5 公共建筑主要房间的设计新风量建筑类型与房间名称新风量 m/(hp)商务中心客房5 星级504星级403星级30餐厅、宴会厅、多功能厅5星级304星级253星级20大堂、四季厅4-5星级10商业服务中心4-5星级20美容美发康乐设施中心30商场、书店20餐厅20管理中心30学校教室小学11初中14高中172.3.4 主要房间换气次数:Table 2.6 主要房间换气次数Room NameAir Changes (times/h)Room NameAir Changes (times/h)卫生间5-10西餐厨房30-40开水

27、间、暗室5职工餐厅厨房25-35制冷机房4-6车库6配电室3-4浴室(无窗)5-10全封闭蓄电池室3-5洗衣房15-20发电机房贮油间5换热站10-15电梯机房5-15水泵房3-5吸烟室10污水泵房8中餐厨房40-50XX市市建筑的年累计冷热负荷相差不大,采用地源热泵技术,不仅可以基本实现夏季向地下蓄热,冬季从地下取热的功能,而且相对于传统空调方式,采用地埋管换热器的地源热泵系统运行效率更高,因此该地区是地源热泵技术应用的适宜区域。2.4 地源热泵项目设计流程 (以四号能源中心为例)该项目每个能源中心技术设计的标准程序分为七步,如图2-2所示。为了使计算简单易懂,以四号能源中心(潍城区政府)为

28、例。其他能源中心(共十二个)详细的计算结果在附件3中。图2-2 设计程序流程图2.4.1工程概况(1) 工程信息项目每栋楼的基本信息和采取的能源节省措施总结如下表2-7:表2-7 建筑物基本信息能源中心名称潍城区政府建筑年代2003项目建筑建筑面积()层数办公区1#办公楼37000122#办公楼7741.263#办公楼7741.264#办公楼7741.265#办公楼7741.26居住区6#餐厅741.03总计-68705.88-节能措施围护结构部位节能措施传热系数 (W/(K))标准值设计值屋面50厚挤塑聚苯板(XPS板)0.550.5外墙外墙为外保温,采用50厚保温岩棉(干密度80200)0

29、.5外门窗及透明幕墙断热铝型材+Low-e中空玻璃(6Low-e+12空气+6透明)外门窗的气密性为4级透明幕墙的气密性为3级3.02.7 透明屋面 断热铝型材+Low-e中空玻璃遮阳系数:0.603.02.5地下室底板及外墙地下室外墙设置30厚挤塑聚苯板保温层0.6架空楼板底面接触室外空气的楼板板底设置50厚保温岩棉(干密度80200)0.6 外窗可开面积占窗户总面积的比率不小于30%,透明幕墙的可开面积占透明幕墙的比率不小于15%。建筑的热工设计符合关于DBJ14-036-2006建筑规范。(2) 既有能源系统和末端设备 建筑的既有冷热源系统是市政集中供热系统和冷水机组,末端设备见表2-8

30、。表2-8 能源系统末端设备房间名称末端设备大空间、大型会议厅风机盘管加新风处理机组小空间如办公室等 风机盘管加新风处理机组2.4.2既有系统的实测能耗 建筑物是由来自集中供热站的高温高压蒸汽来提供热量,冷凝水直接排放。A. 供热季建筑物本身消耗的能源(不含其它损失)建筑物每天的蒸汽耗量是通过流量计测得的,蒸汽和冷凝水的温度和压力是现场手工记录。通过记录的压力和温度,供应蒸汽和冷凝水的焓值可以通过蒸汽和水的焓湿图得到。因此,建筑物的实际耗热量可以由以下的方程式计算出: Qb,winter 总的耗热量(kJ) Ms 总的使用蒸汽的质量 (kg) hs 、hw 供应蒸汽的焓和回水的焓值 kJ/(k

31、g.K) B.实测总能耗 该项目集中供热的热源为蒸汽供暖,而高温蒸汽生产输送过程中会不可避免地产生大量的热量损失,主要由三部分组成。 第一部分是热源厂锅炉的热效率的损失;第二部分损失是在汽水换热站中换热后生成的凝结水造成的,这种损失跟凝结水回收率有关;第三部分是由于不均匀的供热引起的。根据民用建筑节能设计标准(采暖居住建筑部分)可知,供热锅炉的热效率为78%,管网输送效率0.9,因此集中供热总效率。(1) 集中供暖季建筑物总耗热量集中采暖季的累积耗热量(kJ)集中供暖总效率,取 (2) 集中供暖季建筑物的标准煤总耗量29308每千克标准煤的发热值(kJ) 该项目实测的末端能耗和建筑物的实际总能

32、耗计算列于下表2-9。 C. 现有制冷系统的电量消耗制冷系统总的电量消耗由安装在机房的功率计测出,见表2-9。表2-9 实测制冷总能耗月份实测制冷总能耗(MWh)1020304051316282760986589277100110120总计1957D. 现有系统实测总能耗现有系统各月实测总能耗见表2-10表2-10 各月实测能耗实测能耗制冷采暖月份实测制冷总能耗(MWh)实测制冷耗煤量 (tce)实测采暖总能耗(MWh))实测采暖耗煤量 (tce)1001734288.542001357226.57300602100.3340000513142.4500628290.96007609196.8

33、0008658212.4800927789.55001000001100666111.1512001470244.56总计1957632.235829971.15单位面积能源消耗量0.03350.1080.09980.01662.4.3 建筑物的预测负荷与预测能耗建筑物的预测能耗是根据建筑的实测能耗量和地源热泵系统的估计能效比来得出的。地源热泵系统的平均能效比的值供热大约为3.5,制冷为4.5。预测的热量和冷量需求稍微比现场实测值低,因为在地源热泵运行时经营者采取了科学合理的运行管理措施与控制策略,以及分户计量。建筑的预测供热量/制冷量和能源消耗列于下表2-11。表2-11 建筑物预测负荷与能

34、耗 月份预测COP预测热负荷(MWh)预测冷负荷(MWh)预计耗热量MWh预计耗冷量MWh13.51647.46 0.00 470.702857123.41289.42 0.00 379.239705933.4571.87 0.00 168.1973529400.00 0.00 054.70.00 412.00 087.658723464.60.00 882.82 0191.916521774.50.00 1852.27 0411.61684.50.00 2062.26 0458.2894.40.00 869.14 0197.53090911000.00 0.00 0113.6632.60 0

35、.00 175.7208333123.51396.17 0.00 398.9048571总计5537.51 6078.48 1592.77 1347.00 MJ/m2kWh/m2kWh/m2kWh/m2341.35 104.0827.2723.072.4.4 设备选择和地埋管换热器的热平衡分析 根据设计文件,设计的峰值冷负荷为80W/m2,峰值热负荷为67 W/m2。地源热泵系统的主要设备选择见下表。表2-12 主要设备材料表编号名称规格型号性能单位数量备注1螺杆式地源热泵机组制冷量:1797KW制热量:1965KW制冷用电量:381.5KW制热用电量:265.9KW机组运转重量:11880k

36、g台2制冷时:使用侧进出口水温12/7C,水流量309m/h地源侧进出口水温26/30C,流量443m/h制热时:使用侧进出口水温40/45C,冷冻水流量338m/h地源侧进出口水温8/4C,冷冻水流量425m/h2空调侧循环水泵流量:371m3/h杨程:33.4mH2O台3保留原有水泵3地埋管侧循环水泵Q=460m/hH=47mH2O台32用一备 N=110KW/台安装详见:LO3S001-163150地埋管换热器全年冷热负荷计算在地源热泵系统中,实际地埋管换热器的散热与取热负荷与建筑物的冷、热负荷并不直接相等,它还与采用的热泵机组的能效比有关,其关系如下。地埋管换热器的取热量: (1)地埋

37、管换热器的散热量: (2)Pheat 与Pcool 分别是制热与制冷工况下机组及水泵的功率,可近似取机组的功率。COPg,h 和COPg,c 是热泵的平均COP,假定为5。 由上式可知,在考虑了机组的耗功量后地埋管换热器的散热量与取热量的比值要明显高于建筑物所需的冷负荷与热负荷的比值。潍城区政府的负荷情况如下表。表2-13 地源热泵负荷设计冷指标(W/m2)设计热指标(W/m2)累积排热量(MWh)累积取热量(MWh)不平衡率%设计方案80677294.1764430.0060.392665GSHP+ASHP2.4.5项目设计方案和建设费用 (1) 钻井容量根据建筑物的设计冷热负荷与预测累积负

38、荷,设计地源热泵为建筑物制冷和供暖。通过TRT报告,双U地埋管换热率冬季为34 W/m ,夏季为58W/m。因此,地埋管换热器的设计参数见下表。表2-13 地埋管设计结果钻井数量钻井长度(m)钻井间距 (m)占地面积 (m2)96796662524175(2) 工程初投资 表2-15工程初投资项目空调面积 m2造价 元/m2总投资(百万元)1热泵机组(500元/kW)58400402.3362附属设备(元/m2)58400100.5843配电 (元/m2)58400100.5844埋管管材(元/m2)5840041.382.425风机盘管58400006施工费用(元/m2)5840082.76

39、4.83地源热泵系统总投资184.1410.75建筑本体外保温投资费用5840000本中心项目总投资184.1410.752.4.6转换系数和收费标准 (1) 转换系数 以下计算所使用的转换系数见下表。序号项目单位值参考1标准煤的低热值 kJ/kg ce29308生产能源总消耗计算总则 GB/T 25892008 2XX市发电效率NA0.38区域发电厂的发电效率3热源厂锅炉效率NA0.8区域供热站锅炉热效率4电与标准煤的转换系数kg ce/kWh0.323生产能源总消耗计算总则 GB/T 25892008 5CO2排放量t CO2/tce2.493中国建筑能源节能报告,2009,清华大学 6S

40、O2 排放量t SO2/tce0.00757NOx 排放量t NOx/tce0.00388粉尘排放量t Dust/tce0.0068(2) 暂定收费标准和改造后能源系统的电价对住户进行节能改造之后,实现的收费价格:采暖季仍按照当前现行的供暖收费标准来执行;制冷的收费标准是根据现有系统的制冷费用低10%左右的价格来执行的。表2-17 不同建筑物供冷/供暖价格项目居住率供冷价格(元/)供暖价格(元/)公建0.922534.32学校11021居住建筑0.9625.6商业建筑13134.32注:价格是没有考虑通货膨胀的预测最低值。公建和商业建筑的电费为0.73元/kWh,居住建筑和学校的电费为0.54

41、 元/kWh。(3) 回收年限计算 使用静态回收年限计算方法,这里,补贴是一次性补贴,包括两部分: 一, 政府节能补贴是38.5元每平方米。二, 节省每公斤标煤补贴360元。2.4.7每年能源费用和节省费用 通过能耗计算方法,项目实施者在对系统改造后的支出与收入见表2-18。表2-18系统改造后的支出与收入现有系统总费用 (RMB)3433170.09改造后的预测能源总费用(RMB)2146030.47改造后的运行维护管理费(RMB)214603.05改造后的供暖制冷收费 (RMB)3187144.96改造后政府补贴 (RMB)252371.22热泵机组投资费用 (RMB)10753655.1

42、7总投资 (RMB)10501283.96回收期 (年)12.71每年节省费用节省费用(RMB)一次能源节省量(kg/m2)一次能源节省量 (tce)1287139.63 12.03 702.55 2.4.8 环境分析 对于一个合理的热平衡性较好的地源热泵系统而言,浅层地热能是一种可再生能源。在项目运行期间没有污染物和温室气体的排出。项目每年的环境收益计算列于表2-19。表2-19 环境收益一次能源节省量 (tce)CO2减排量 (吨)SO2减排量 (吨)Nox减排量 (吨)粉尘减排量 (吨)702.55 1751.46 5.27 2.67 4.78 CO2节省的投资费用 RMB/吨 CO25995.732.5 污水源热泵项目设计流程 2.5.1 建筑物描述 (1) 建筑物信息Table 2.20 污水源热泵系统的建筑信息编号建筑名称主要信息建筑面积/ m2备 注1紫金花园

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 办公文档 > 其他范文


备案号:宁ICP备20000045号-2

经营许可证:宁B2-20210002

宁公网安备 64010402000987号