《通用GDT培训资料.ppt》由会员分享,可在线阅读,更多相关《通用GDT培训资料.ppt(101页珍藏版)》请在三一办公上搜索。
1、,1,GD&T(形位公差)简介,2,“GD&T”全称为“Gloal Dimensioning and Tolerancing-全球的尺寸和公差的规定”。标准中包含有尺寸标注方法(属我国技术制图标准)与几何公差(属我国形状和位置公差标准)两大部分。其中尺寸标注仅是一种表达方式,无技术含量,且与我国的G标准基本相同,故本次不作介绍。下面仅对“形状和位置(几何)公差”部分,作一简要的、基础的讲述。,GM的GD&T新标准(97起)和我国的形位公差标准都等效采用了国际标准(ISO),所以绝大多数的内容是相同的。由于我国的形位公差标准体系分类、名词术语容易理解并便于自学,且国内供应商也较熟悉,故下面根据自
2、己多年的实践,基本上按我国G标准的名词术语来解释 GM 的GD&T 标准。当某些名词术语及内容上两国的标准有所区别时,GM 的 GD&T 新、旧标准不同之处,会特别加以说明。,3,两国的有关标准:中国 G/T 1182-96 形状和位置公差 通则、定义、符号和图样表示法 G/T 4249-96 公差原则 G/T 16671-96 形状和位置公差 最大实体要求、最小实体要求和 可逆要求 G/T 16892-97 形状和位置公差 非刚性零件注法 G/T 17780 02 几何公差 位置度公差注法 美国 ASME Y14.5M-82(旧)Dimensioning and Tolerancing AS
3、ME Y14.5M-94(新)Dimensioning and Tolerancing4通用 A-91-89(旧)Dimensioning and Tolerancing Gloal Dimensioning and Tolerancing Addendum 97/01/04,注:97/01版本为通用/福特/克莱斯勒一起发布,04版本为通用单独发布。,相应的国际标准有:ISO 1101-83、ISO 5459-81、ISO 8015-85、ISO 2692-88、ISO 10579-92、ISO 10579-93等。,4,由于加工过程中工件在机床上的定位误差、刀具与工件的相对运动不正确、夹紧力
4、和切削力引起的工件变形、工件的内应力的释放等原因,完工工件会产生各种形状和位置误差。,各种形状和位置误差都将会对零件的装配和使用性能产生不同程度的影响。,因此机械类零件的几何精度,除了必须规定适当的尺寸公差和表面粗糙度要求以外,还须对零件规定合理的形状和位置公差。,5,要素 Feature,1定义 要素是指零件上的特征部分 点、线、面。任何零件不论其复杂程度如何,它都是由许多要素组成的。,形位公差研究对象就是要素,即点、线、面。,6,2 类型2.1 按存在的状态分:实际要素 Real Feature 零件加工后实际存在的要素(存在误差)。,实际要素是按规定方法,由在实际要素上测量有限个点得到的
5、实际要素的近似替代要素(测得实际要素)来体现的。,理想要素 Ideal Feature 理论正确的要素(无误差)。,在技术制图中我们画出的要素为理想要素。理想轮廓要素用实线(可见)或虚线(不可见)表示;理想中心要素用点划线表示。,每个实际要素由于测量方法不同,可以有若干个替代要素。,测量误差越小,测得实际要素越接近实际要素。,7,2.2 按结构特征分:轮廓(实有)要素 Integral Feature 表面上的点、线或面。,中心(导出)要素 Derived Feature 由一个或几个轮廓(组成)要素得到的中心点(圆心或球心)、中心线(轴线)或中心面。,图 2,8,2.3 按所处的地位分:被测
6、要素 Features of a part 图样上给出了形位公差要求的要素,为测量的对象。基准要素 Datum Feature 零件上用来建立基准并实际起基准作用的实际要素(如一条边、一个表面或一个孔)。,被测要素在图样上一般通过带箭头的指引线与形位公差框格相连;基准要素在图样上用基准符号表示。,基准要素 基准,图 3,9,2.4 按结构性能分:单一要素 Individual Feature 具有形状公差要求的要素。,功能关系是指要素间某种确定的方向和位置关系,如垂直、平行、同轴、对称等。也即具有位置公差要求的要素。,关联要素 Related Feature 与其它要素具有功能关系的要素。,图
7、 4,10,2.5 按与尺寸关系分:尺寸要素 Feature of Size 由一定大小的线性尺寸或角度尺寸 确定的几何形状。,尺寸要素可以是圆柱形、球形或两平行对应面等。见图5。,非尺寸要素(本人定义)没有大小尺寸的几何形状。,非尺寸要素可以是表面、素线。见图6。,上述要素的名称将在后面经常出现,须注意的是一个要素在不同的场合,它的名称会有不同的称呼。,表面,图 5,图 6,11,二 符号 Symol,图 7,1)GM新标准公差特征项目的符号与 ASME标准(美)、ISO 标准和我国 G 标准完全相同。2)GM A-91 旧标准公差特征项目的符号略有不同,见图8。,2.1 公差特征项目的符号
8、(GM新标准),12,1.线轮廓度可带基准成为位置公差;2.此分类见ANSI T14.5M-82,但是不强调。,GM A-91标准的公差特征项目符号,图 8,与新标准主要区别:,1)无同轴度和对称度;,2)将面轮廓度放置于位置公差中,必须带基准;,3)跳动箭头为空心箭头。,13,2.2 附加符号(GM新标准),图 9,理论正确尺寸asic Dimensions:不标注公差的带框尺寸。它可以是理论正确线性尺寸和理论正确角度尺寸。,14,3.1 形位公差框格 Feature Control Frames,图 10,无基准要求的形状公差,公差框格仅两格;有基准要求的位置公差,公差框格为三格至五格。,
9、形位公差框格在图样上一般为水平放置,必要时也可垂直放置(逆时针转)。,三 标注 Mark,15,3.2 被测要素的标注(两国标准不同)3.2.1 中国G标准 形位公差框格通过用带箭头的指引线与要素相连。a)被测要素是轮廓要素时,箭头置于要素的轮廓线或轮廓线的延长线上(但必须与尺寸线明显地分开)。见图11-左。)被测要素是中心要素时,带箭头的指引线应与尺寸线的延长线对齐。见图11 右。当尺寸线箭头由外向内标注时,则箭头合一。,图 11,带箭头的指引线可从框格任一方向引出,但不可同时从两端引出。,16,3.2.2GM标准(有四种,且可无带箭头的指引线),a)形位公差框格放于要素的尺寸或与说明下面;
10、,当某些公差特征项目的符号可同时应用于轮廓及中心要素时,GM标准的标注方法与我国G标准相同。它在这些公差特征项目中有专门说明。,图 12,)形位公差框格用带箭头的指引线与要素相连;,d)把形位公差框格侧面或端面与尺寸要素的尺寸线的延长线相连。,c)把形位公差框格侧面或端面与要素的延长线相连;,17,3.2.3 几个特殊标注,除非另有要求,其公差适用于整个被测要素。,对实际被测要素的形状公差在全长上和给定长度内分别有要求时,应按图13 标注(GM 标准与我国G 标准相同);,图 13,18,)轮廓度中若表示的公差要求适用范围不是整个轮廓时,应标注出 其范围。见图9标注(仅GM标准)。,图 14,
11、19,c)轮廓度中若表示的公差要求适用于整个轮廓。则在指引线转角处加 一小圆(全周符号)。见图15(GM 新标准与我国G 标准相同)。,图 15,GM标准也可不加圆,而在框格下标注 ALL AROUND来表示。图例在面轮廓度公差带介绍中。,GM标准将面轮廓度定义为位置公差,使用又广,故有些特殊的标注规定,在后面介绍面轮廓度公差时再讲述。,20,d)螺纹、齿轮和花键(两国标准一样)一般情况下,以螺纹中径轴线作为被测要素或基准要素。如用大径轴线标注“MAJOR DIA”(MD);用小径轴线标注“MINOR DIA”(LD)。齿轮和花键轴线作为被测要素或基准要素时,如用节径轴线标注“PITCH DI
12、A”(PD);用大径轴线标注“MAJOR DIA”(MD),用小径轴线标注“MINOR DIA”(LD)。,G标准规定了在公差带内进一步限制被测要素形状的四个符号。,图 16,e)我国G标准独有的四个符号(图16),21,3.3 基准要素的标注3.3.1 符号(GM标准规定字母I、O和Q不用,我国G标准还要多)GM新标准(ISO)GM A-91 标准 我国G标准,3.3.2 与基准要素的连接(GM 新标准与我国G 标准相同)a)基准要素是轮廓要素时,符号置于基准要素的轮廓线或轮廓线 的延长线上(但必须与尺寸线明显地分开)。见图17。,图 17,A,A,A,22,)基准要素是中心要素时,符号中的
13、连线应与尺寸线对齐。,图 18,23,3.3.3 GM A-91 标准基准符号的标注与形位公差框格标注一样,不明确定义轮廓要素和中心要素。因此GM图样的右上角或左上角专门有“基准说明表”对基准要素进行描述。,图 19,a),),c),d),20,20,24,四 基准 Datum,4.1定义 基准 与被测要素有关且用来定其几何位置关系的一个几何理想要素(如轴线、直线、平面等),可由零件上的一个或多个要素构成。,模拟基准要素 在加工和检测过程中用来建立基准并与基准要素相接触,且具有足够精度的实际表面。,图 20,在建立基准的过程中会排除基准要素本身的形状误差。,25,图 21,模拟基准要素是基准的
14、实际体现。,26,4.2类型单一基准 一个要素做一个基准;,组合(公共)基准 二个或二个以上要素做一个基准;,典型的例子为公共轴线做基准。,基准体系 由二个或三个独立的基准构成的组合;,27,三基面体系 Datum Reference Frame 三个相互垂直的理想(基准)平面构成的空间直角坐标系。见图23。,图 23,28,A.板类零件基准体系,图 24,用三个基准框格标注,29,.盘类零件基准体系,图 25,虽然,还余下一个自由度,由于该零件对于基准轴线 M 无定向要求,即该零件加工四个孔时,可随意将零件放置于夹具中,而不影响其加工要求。,用二个基准框格标注,30,在图26中可发现该盘类零
15、件的基准框格采用了三格,这是因为该零件对基准轴线V有方向要求。而从定位原理上讲基准 U、V 已构成了基准体系。基准W是一个辅助基准平面(不属于基准体系)。,图 26,31,由上可知:基准体系(又称三基面体系)不是一定要用三个基准框格来表示的。对于板类零件,用三个基准框格来表示基准体系;对于盘类零件,只要用二个基准框格,就已经表示基准体系了。,在实际工作中,大量接触到的基准体系原理为一面二销。见图27。,上面是从基准体系的原理来论述基准框格的表示数量,在实际使用中,只需能满足零件的功能要求,无需强调基准框格的数量多少。,图 27,32,图 29,图 28,基准目标 Datum Target 用于
16、体现某个基准而在零件上指定的 点、线或局部表面。分别简称为点目标、线目标和面目标。,图 30,1.点目标可用带球头的圆柱销体现;2.线目标可用圆柱销素线体现;3.面目标可为圆柱销端面,也可为方形块端 面或不规则形状块的端面体现。,基准目标的位置必须用理论正确尺寸表示。面目标还应标注其表面的大小尺寸。,33,图 26,图 31,示例(图31):,用基准目标来体现基准,能提高基准的定位精度。,34,4.3 顺序基准体系中基准的顺序前后表示了不同的设计要求。见图32。,图 32,35,五 公差带 Tolerance Zone,5.1定义 公差带 实际被测要素允许变动的区域。它体现了对被测要素的设计要
17、求,也是加工和检验的根据。,5.2四大特征 形状、大小、方向、位置 A 形状 Form 公差带形状主要有:两平行直线、两同心圆、两等距曲线、两平行平面、两同轴圆柱、两等距曲面、一个圆柱、一个球。不同的公差特征项目一般具有不同形状的公差带。其中有些项目只有唯一形状的公差带;有些项目根据不同的设计要求具有数种形状的公差带。,当实际被测要素的误差在公差带内合格,超出则不合格。,36,直线度,图 34 两组相互垂直的两平行平面,图 33 两平行平面,若系给定平面上线的直线度(如刻度线),则公差带为两平行直线。,37,直线度(轴线),图 35 一个圆柱,图 36 两平行平面,平面度,38,圆度,图 37
18、 两同心圆,39,圆柱度,图 38 两同轴圆柱,从理论上分析,圆柱度即控制了正截面方向的形状误差,又控制了纵截面方向的形状误差。但目前还难以找到与此相配的测量方法。,40,线轮廓度,图 39 两等距曲线,采用线轮廓度首先必须将其理想轮廓线标注出来,因为公差带形状与之有关。,理想线轮廓到底面位置由尺寸公差控制,则线轮廓度公差带将可在尺寸公差带内上下平动及摆动。,当线轮廓度带基准成为位置公差时,则公差带将与基准有方向或/和位置要求。,41,图 40 两等距曲面,GM标准对周边要求的两种标注形式。,采用面轮廓度首先必须将其理想轮廓面标注出来,因为公差带形状与之有关。,面轮廓度,42,图 41,我国G
19、标准面轮廓公差带为对称于理想轮廓面一种(图a)。,GM-04标准用符号 U 表示公差带不对称于理想轮廓的分布。,0.6 U 0.6,GM标准面轮廓度的标注,0.6 U 0,0.6 U 0.2,43,GM A-91对面轮廓度标注的特殊规定。当位置、方向、形状要求不同时,可如下图标注。,A,C,A,C,Z,3.0,1.6,0.9,定位,定向,形状,Z,GM新标准对轮廓度标注有一些专门的新的规定。,44,复合轮廓度(美国ASME新标准),图 43,图 44,我国G标准尙无此标注形式,45,轮廓度(GM新标准),A,C,2.5,0.5,A,C,2.5,0.5,A,对基准A、和C的位置和方向要求,对形状
20、要求,对基准A、和C的位置要求,对基准A 的方向和形状要求,A,C,2.5,0.5,复合轮廓度,1),2),对基准和C的位置、方向和形状要求,对基准A 的位置、方向和形状要求,独立轮廓度,46,对基准A、和C位置要求,对基准A、和C形状和方向要求,对基准A、和C位置要求,对基准A、和C形状和方向要求,A,C,2.5,0.5,A,基准是表面,基准是轴线,3),4),A,C,2.5,0.5,A,对基准C的位置、方向和形状要求,对基准A、的位置、方向和形状要求,A,C,2.5,0.5,A,C,对基准A、和C 的位置、方向和形状要求,错误标注,上格不起作用,47,实例,下格的0.1公差带在垂直A(方向
21、约束)的前提下、可在上格0.8的公差带中上下、左右平动及摆动。,图 45,48,下格的0.2公差带在垂直A(方向约束)、定向(垂直或平行)的前提下,可在上格0.8的公差带中上下、左右平动。,实例,图 46,49,图 47 两平行平面,对于垂直度,被测要素可能是线或面;基准要素也可能是线或面。因此存在:,面对面垂直度(图47);面对线垂直度;线对面垂直度;线对线垂直度。,垂直度、平行度、倾斜度属于定向公差。其被测要素为关联要素。,垂直度,50,线对线垂直度,图48 两平行平面,图 49 两平行平面,面对线垂直度,51,轴线对面垂直度,图 50 两平行直线,图 51 一个圆柱,线对面垂直度,52,
22、对于平行度,被测要素可能是线或面;基准要素也可能是线或面。因此存在:,面对面平行度(图45);面对线平行度;线对面平行度;线对线平行度。,图 52 两平行平面,平行度的公差带与垂直度的公差带一样,可为两平行平面、两平行直线、一个圆柱,不再一一介绍。,平行度,53,图 53 一个圆柱,线对线平行度,54,对于倾斜度,被测要素可能是线或面;基准要素也可能是线或面。因此存在:,面对面倾斜度(图54);面对线倾斜度;线对面倾斜度;线对线倾斜度。,图 54 两平行平面,倾斜度的公差带与垂直度的公差带一样,可为两平行平面、两平行直线、一个圆柱,不再一一介绍。,采用倾斜度首先必须将其理想角度标注出来,因为公
23、差带方向与之有关。,倾斜度,55,这两项目符号在ASME标准中有,但在GM A-91标准中却无。GM 新标准虽将这两项目符号放入,但仍明确不推荐使用。造成此情况的原因本人认为:GM的图样主要是车身和内饰类零部件,金切件少。图样上又不标注零部件的形状尺寸而要求按数模,这样其形状尺寸都是理论正确尺寸。为图样上大量,并扩大采用面轮廓度和位置度了创造条件。面轮廓度和位置度这两项目的综合控制能力极强。GM就用位置度替代了同轴度和对称度。,我国G 标准将同轴度推荐用于轴线对轴线的位置要求,其公差带为一个圆柱;将对称度推荐用于中心平面对中心平面的位置要求,其公差带为两平行平面。当同轴度用于点对点的位置要求(
24、给定平面)时,即演变为俗称的同心度,其公差带为一个圆。,同轴度和对称度,56,位置度公差描述的是被测要素实际位置对理想位置允许的变动区域,因此位置度有点的位置度、线的位置度、面的位置度。而位置度用的最多的是孔组的位置度。,点的位置度,图 55 一个球,位置度,S 0.6,57,轴线的位置度(任意方向),图 56 一个圆柱,我国 G 标准将此类图样一般用同轴度标注。,右图是用量规来描述零件的检测。,0.4,58,面的位置度,图 57 两平行平面,我国 G 标准将此类图样一般用对称度标注。,59,孔(要素)组的位置度 a)盘类件,孔组的位置度由两种位置要求组成。一个是各孔(要素)之间的位置要求;一
25、个是孔组(整组要素)的定位要求。,图 58 一组圆柱,当两种位置相同时。合一个框格标注;当两种位置不相同时,分上下两格分别标注。称为复合位置度。见图53。,60,)板类件,图 59 一组矩形,一般位置度(给二个相互垂直的方向),61,图 60 一组圆柱,复合位置度,62,说明,检查孔组定位要求的量规,检查各孔之间位置要求的量规,各孔之间位置要求的公差带,孔组定位要求的公差带,图 61,63,圆跳动,圆跳动是一种测量方法,本无公差带而言。为了标准内容的一致性人为的定义了公差带。径向圆跳动为两同心圆、端面圆跳动为两个圆(测量圆柱面上)。G标准还有斜向圆跳动为两同个圆(测量圆锥面上)。,图 62,6
26、4,全跳动,图 63,全跳动是一种测量方法,无公差带而言。为了标准内容的一致性人为的定义了公差带。端面全跳动为两平行平面、径向全跳动为两同轴圆柱、斜向全跳动(G标准无)为两同轴圆锥。,65,大小 Size,若公差带为圆、圆柱或球,则在公差值的数字前加注或S,表示其圆、圆柱或球的直径。,公差带的大小均以公差带的宽度或直径表示,即图样上形位公差框格内给出的公差值。,t,S t,公差值均以毫米为单位。若公差值为公差带的宽度(距离),则在公差值的数字前不加注符号。,t,66,C 方向和位置 Orientation&Location 公差带的方向和位置可以是固定的,也可以是浮动的。如被测要素相对于基准的
27、方向和位置关系是用理论正确尺寸标注的,则公差带方向和位置是固定的,否则就是浮动的。见图64。,2 x 8 0.05,0.5 M A,50 0.2,对于形状公差因无基准而言,所以其公差带的方向和位置肯定 是浮动的。公差带的浮动不是无限的,它受该方向的尺寸公差控制。,2 x 8 0.05,0.5 M A,图 64,50,A,67,六 几个新符号,6.1 正切平面 T 这符号放置于形位公差框格中公差值的后面。表示该公差值为与表面最高点相切的平面(正切平面)之要求。见图65。,图 65,0.1 T A,正切平面,2.50.2,0.1,68,6.2 受控半径 CR GM新标准规定在图样上对带公差的半径有
28、两种标注形式:R 或 CR。其要求见图66。在GM A-91标准中虽然仅一种标注形式R,但其要求相当于新标准中的CR。因此可以认为,新标准增加了一种不须严格控制形状的带公差的半径表示方法。,图 66,69,6.3 自由状态条件 F 这符号放置于形位公差框格中公差值的后面。描述零件在制造中造成的力释放后的变形。所以,只有非刚性零件才应用此符号。图67的设计要求是当零件处于自由状态时,左侧圆柱面的圆度误差不得大于2.5mm;当零件处于约束状态时(注),右侧圆柱面的径向圆跳动不得大于2mm。,图 67,70,6.4 延伸公差带 P 当图61左示螺纹连接时,按常规方法标注,将出现干涉现象。延伸公差带就
29、是为了解决此问题而产生的一种特殊标注方法。它的原理是把螺纹部分的公差带延伸至实体外(图68右)。,图 68,71,图 69,GM标准标注延伸公差带的两种形式(图69),72,我国G标准标注延伸公差带的方法(图70),0.5 P A,4 x 8 H7,40 P,A,100,图 70,73,公差原则(线性尺寸公差与形位公差之间关系),7.1 问题的提出,20 h6,0-0.013,+0.021 0,20 H7,要求这一对零件的最小间隙为0、最大间隙为0.034。,图 72,图 71,但当孔和轴尺寸处处都加工到 20 时,由于存在形状误差,则装配时的最小间隙将不可能为0。这就产生了线性尺寸公差与形位
30、公差之间的关系问题。,设计人员绘制图71、72孔、轴配合之目的是:,74,7.2 有关术语 为了明确线性尺寸公差与形位公差之间关系,对尺寸术语将作 进一步论述与定义。7.2.1 局部实际尺寸 在实际要素的任意正截面上,两对应点之间 测得的距离。,特点:一个合格零件有无数个。,图 73,75,7.2.2 作用尺寸 A 体外作用尺寸 在被测要素的给定长度上,与实际内表面(孔)体外相接的最大理想面(轴),或与实际外表面(轴)体外相接的最小理想面(孔)的直径或宽度。,图 74,特点:一个合格零件只有一个,但一批合格零件仍有无数个。,孔,轴,76,体内作用尺寸 在被测要素的给定长度上,与实际内表面(孔)
31、体内相接的最小理想面(轴),或与实际外表面(轴)体内相接的最大理想面(孔)的直径或宽度。,特点:一个合格零件只有一个,但一批合格零件仍有无数个。,孔 轴,图 75,77,7.2.3 最大实体状态(MMC)和最大实体尺寸(MMS)A 最大实体状态(MMC)实际要素在给定长度上处处位于尺寸极限之内,并具有实体最大(即材料最多)时的状态。最大实体尺寸(MMS)实际要素在最大实体状态下的极限尺寸。内表面(孔)D MM=最小极限尺寸D min;外表面(轴)d MM=最大极限尺寸d max。,特点:一批合格零件只有一个(唯一)。但未考虑形状误差。,7.2.4 最小实体状态(LMC)和最小实体尺寸(LMS)
32、A 最小实体状态(LMC)实际要素在给定长度上处处位于尺寸极限之内,并具有实体最小(即材料最少)时的状态。最小实体尺寸(LMS)实际要素在最小实体状态下的极限尺寸。内表面(孔)D LM=最大极限尺寸D max;外表面(轴)d LM=最小极限尺寸d min。,4 特点:一批合格零件只有一个(唯一)。但未考虑形状误差。,78,7.2.5 最大实体实效状态(MMVC)和最大实体实效尺寸(MMVS)A 最大实体实效状态(MMVC)在给定长度上,实际要素处于最大实体状态(MMC),且其中心要素的形状或位置误差等于给出公差值时的综合极限状态。,图 76,t,t,最大实体实效尺寸(MMVS)最大实体实效状态
33、(MMVC)下的体外作用尺寸。,内表面(孔)D MV=最小极限尺寸D min-中心要素的形位公差值 t;,MMS,MMS,孔,轴,外表面(轴)d MV=最大极限尺寸d max+中心要素的形位公差值 t。,特点:综合考虑了尺寸和形状,唯一。,79,7.2.6 最小实体实效状态(LMVC)和最小实体实效尺寸(LMVS)A 最小实体实效状态(LMVC)在给定长度上,实际要素处于最小实体状态(LMC),且其中心要素的形状或位置误差等于给出公差值时的综合极限状态。,图 77,t,t,LMS,LMS,最小实体实效尺寸(LMVS)最小实体实效状态(LMVC)下的体内作用尺寸。,内表面(孔)D LV=最大极限
34、尺寸D max+中心要素的形位公差值 t;,孔,轴,外表面(轴)d LV=最小极限尺寸d min-中心要素的形位公差值 t。,4 特点:综合考虑了尺寸和形状,唯一。,80,7.2.7 边界 由设计给定的具有理想形状的极限包容面。A 最大实体边界(MM)尺寸为最大实体尺寸(MMS)的边界。最小实体边界(LM)尺寸为最小实体尺寸(LMS)的边界。C 最大实体实效边界(MMV)尺寸为最大实体实效尺寸(MMVS)的边界。D 最小实体实效边界(LMV)尺寸为最小实体实效尺寸(LMVS)的边界。,建立边界概念系便于理解,且可与量规设计相结合。,GM A-91标准从通过计算量规基本尺寸的角度来描述该要求是一
35、个相当好,而容易理解的方法。,81,7.3 独立原则 Regardless of feature size(RFS)图样上给定的每一个尺寸和形状、位置要求均是独立的,应分别满足要求,两者无关。GM(美国)新标准与ISO、我国G标准统一,将独立原则作为尺寸公差和形位公差相互关系应遵循的基本原则。独立原则在图样的形位公差框格中没有任何关于公差原则的附加符号(图78)。,采用独立原则要素的形位误差值,测量时需用通用量仪测出具体数值,以判断其合格与否。,图 78,20,0.5,0-0.5,82,GM A-91与美国旧标准将原则1 PERFECT FORM AT MMC(即下面要讲的包容要求)作为尺寸公
36、差和形位公差相互关系的基本原则。规定要素执行独立原则需用 S 表示,并强调在应用位置度时,不论是被测要素还是基准要素执行独立原则必须标明 S;应用于其它特征符号项目时 S 可省略(原则2)。见下图。,83,图 79,7.4相关要求(按我国G标准分类介绍)尺寸公差和形位公差相互有关的公差要求。A 包容要求 Envelope Requirement(GM新标准未单独列出)1)实际要素应遵守其最大实体边界(MM),其局部实际尺寸不得超 出最小实体尺寸(LMS)的要求。,3)该要求的实质是:被测要素在MMC时形状是理想的。当被测要素 的尺寸偏离了MMS,被测要素的形位公差数值可以获得一补偿值(从被测要
37、素的尺寸公差处)。,2)包容要求仅用于单一、被测要素,且这些要素必须是尺寸要素。包容要求GM新标准标注形式是直线度0 M(图79)。,84,设计中如认为补偿后可能获得的公差值太大时,应提出进一步要求。加注 0.25(图80),则补偿值到 0.25为止。,图 80,4)包容要求主要使用于必须保证配合性能的场合。如前面图64和图 65的尺寸公差与形位公差采用包容要求,则装配时的最小间隙将 保证为0。,Dmin-dmax=20-20=0,0-0.5,85,G 标准标注形式是在尺寸公差后加 E。见图81右图。,图 81,5)包容要求的测量方法,一般采用极限量规(通、止规)。如采用 通用量仪测量,则应考
38、虑安全裕度数值及量具的不确定度。6)我国G标准,“包容要求”与“最大实体要求”应用的场合不同,测量方法也有区别,本人认为我国G标准的分类较合理。,20,0 M,0-0.5,0-0.5,20,E,=,GM 新标准,G 标准,GM旧标准将包容要求作为基本原则,在图上无标住符号。,=,0-0.5,20,GM 旧标准,86,t A,t A,t A C,最大实体要求 Maximum Material Requirement 1)被测要素的实际轮廓应遵守其最大实体实效边界(MMV)。当 其实际尺寸偏离最大实体尺寸(MMS)时,允许其形位公差值超 出在最大实体状态(MMC)下给出的公差值的一种要求。2)最大
39、实体要求可以只用于被测要素,也可同时用于被测要素和 基准要素(图82)。但这些要素必须是尺寸要素。,图 82,最大实体要求的标注形式为加 M。,4)最大实体要求的零件一般用综合量规或检具测量其形位误差,此 外还必须用通用量仪测量要素的局部实际尺寸是否合格。,3)最大实体要求主要使用于只要能满足装配的场合。,87,0-0.5,图 83,5.1)最大实体要求应用于被测要素(图83、图84)被测要素的实际轮廓在给定的长度上处处不得超出最大实体实效边界(MMV),即其体外作用尺寸不应超出最大实体实效尺寸,且其局部实际尺寸不得超出最大实体尺寸(MMS)和最小实体尺寸(LMS)。,该要求的实质是:框格中被
40、测要素的形位公差值是该要素处于最大实体状态(MMC)时给出的(即被测要素在MMC时就允许有一个形位公差值),而当被测要素的尺寸偏离了MMS后,被测要素的形位误差值可以超出在最大实体状态下给出的形位公差值,即可从被测要素的尺寸公差处获得一个补偿值。,88,图 84,图83是最大实体要求应用于被测要素,而被测要素是单一要素。图84是最大实体要求应用于被测要素,而被测要素是关联要素。两者主要区别为后者的圆柱公差带必须与基准A垂直。因为它是定向公差(垂直度)。下页是复合位置度中被测要素应用最大实体要求。,89,90,5.2)最大实体要求应用于基准要素 必须注意基准要素本身采用什么原则或要求:a)基准要
41、素本身采用最大实体要求时,则其相应的边界为最大实体 实效边界(MMV);,图 85,91,)基准要素本身不采用最大实体要求(无 M)时,则其相应的边界为最大实体边界(MM)。,图 86,92,该要求的实质是:当基准要素的实际轮廓偏离其相应的边界时(即其体外作用尺寸偏离其相应的边界尺寸),则允许基准要素在一定的范围内浮动,其浮动范围等于基准要素的体外作用尺寸与其相应的边界尺寸之差。该浮动值可补偿给被测要素的形位误差值。但因该补偿是通过基准要素的体外作用尺寸来实现的,故不能简单的用图表来描述其补偿关系。只能用测量的量规来描述。,该要求的实质是:当被测要素的尺寸偏离了MMS和基准要素的实际轮廓偏离其
42、相应的边界时,被测要素的形位误差值除了可从被测要素的尺寸公差处获得一个补偿值外,还可从基准要素的浮动中获得另一个补偿值。,5.3)最大实体要求同时用于被测要素和基准要素,图78、79中的量规尺寸数值仅用来说明基准采用最大实体要求的原理,生产中的量规尺寸并非如此简单。量规的测量元件也需标注尺寸公差和形位公差,对于通规还需考虑磨损公差。,93,当基准采用基准体系,第二基准和(或)第三基准为尺寸要素又采用最大实体要求时(下图d),基准要素与被测要素遵守相关要求。,当基准采用基准体系,第二基准和(或)第三基准为尺寸要素不采用最大实体要求时(下图c),基准要素与被测要素遵守独立原则。,5.4)关于基准定
43、位的重要说明,关键区别,94,最小实体要求在GM标准中有此内容,但图样中尚未出现。,C 最小实体要求 Least Material Requirement 1)被测要素的实际轮廓应遵守其最小实体实效边界(LMV)。当其 实体尺寸偏离最小实体尺寸(LMS)时,允许其形位公差值超出在 最小实体状态(LMC)下给出的公差值的一种要求。2)最小实体要求可以用于被测要素,也可同时用于被测要素和基准 要素。只这些要素必须是尺寸要素。最小实体要求的标注形式为加 L。3)最小实体要求的原理与最大实体要求 一样,仅控制边界不同。不 作详细介绍。下面通过 一个示例说明。,5)最大实体要求的零件一般用综合量规或检具
44、测量。,4)最小实体要求主要使用于保证孔边厚度和轴的强度的场合。,95,7.3.3 示例(用公差带图解释),1)独立原则(轴),19.7-20,-0.3 0,尺寸,形位,0.1,0.1,19.7,20,2)独立原则(孔),0.1,20-20.3,形位,尺寸,0+0.3,0.1,20.3,20,96,19.7-20,0.1 M,19.7-20,4)最大实体要求(轴),形位,3)包容要求(轴),-0.3 0+0.1,LMS=19.7,MMS=20,尺寸,0.4,MMVS=MMS+t=20+0.1=20.1,0.1,0 M,97,19.7-20,LMS=19.7,MMS=20,-0.3-0.2 0,
45、尺寸,形位,0.2,19.8,0.3,5)包容要求有进一步要求(轴),尺寸,形位,0+0.3,LMS=20.3,MMS=20,0.3,6)包容要求(孔),98,7)包容要求有进一步要求(孔),尺寸,形位,0+0.3,0.3,LMS=20.3,MMS=20,8)最大实体要求(孔),20-20.3,MMVS=MMS-t=20-0.1=19.9,形位,尺寸,-0.1 0+0.3,LMS=20.3,MMS=20,0.4,0.1,0.2,20.15,+0.2,20-20.3,99,9)最小实体要求(孔),0.4 L A,A,6,8-8.25,尺寸,形位,0+0.25+0.65,LMS=8.25,MMS=
46、8,0.65,LMVS=LMS+t=8.25+0.4=8.65,0.4,图 87,100,t M R A,图 88,应用可逆要求后,则上图79【除5)、7)外】中公差带图内涂色部分公差带将有效。,7.3.4 可逆要求 Reciprocity Requirement(GM标准无)最大实体要求和最小实体要求的公差补偿是要素的尺寸补偿给形位,不能反补偿,即极限尺寸必须合格。ISO和我国标准另设有可逆要求,规定尺寸、形位可互相补偿。可逆要求(RR)尺寸要素的形位误差值小于给出的形位公差值时,允许在满足零件功能要求的前提下扩大尺寸公差。用 R表示。该符号放在框格中 M 或 L 的后面(图80)。,101,八 结束语,国际上,关于形位公差的理论和应用研究工作,是在近四十年才陆续开展起来的一项新的学科。因此,还有相当一部分问题需要进一步的探索和开拓。尤其是测得实际要素的模拟,个别项目的测量方法,正截面的理解等等。希望大家在工作中有所作为。,本文介绍的重点是如何读懂图中形位公差的标注,了解公差带的特性。而“形位公差”理论较强,外来图样,甚至标准中也会有错误出现,请各位工程师注意。,