三角函数图像公式大全.doc

上传人:小飞机 文档编号:4132300 上传时间:2023-04-06 格式:DOC 页数:9 大小:821.50KB
返回 下载 相关 举报
三角函数图像公式大全.doc_第1页
第1页 / 共9页
三角函数图像公式大全.doc_第2页
第2页 / 共9页
三角函数图像公式大全.doc_第3页
第3页 / 共9页
三角函数图像公式大全.doc_第4页
第4页 / 共9页
三角函数图像公式大全.doc_第5页
第5页 / 共9页
点击查看更多>>
资源描述

《三角函数图像公式大全.doc》由会员分享,可在线阅读,更多相关《三角函数图像公式大全.doc(9页珍藏版)》请在三一办公上搜索。

1、幂函数的图形指数函数的图形对数函数的图形 三角函数的图形各三角函数值在各象限的符号sincsc cossec tancot三角函数的性质函数y=sinxy=cosxy=tanxy=cotx定义域RRxxR且xk+,kZxxR且xk,kZ值域-1,1x=2k+ 时ymax=1x=2k- 时ymin=-1-1,1x=2k时ymax=1x=2k+时ymin=-1R无最大值无最小值R无最大值无最小值周期性周期为2周期为2周期为周期为奇偶性奇函数偶函数奇函数奇函数单调性在2k-,2k+ 上都是增函数;在2k+ ,2k+上都是减函数(kZ)在2k-,2k上都是增函数;在2k,2k+上都是减函数(kZ)在(

2、k-,k+)内都是增函数(kZ)在(k,k+)内都是减函数(kZ)反三角函数的图形反三角函数的性质名称反正弦函数反余弦函数反正切函数反余切函数定义y=sinx(x-, 的反函数,叫做反正弦函数,记作x=arsinyy=cosx(x0,)的反函数,叫做反余弦函数,记作x=arccosyy=tanx(x(- , )的反函数,叫做反正切函数,记作x=arctanyy=cotx(x(0,)的反函数,叫做反余切函数,记作x=arccoty理解arcsinx表示属于-,且正弦值等于x的角arccosx表示属于0,且余弦值等于x的角arctanx表示属于(-,),且正切值等于x的角arccotx表示属于(0

3、,)且余切值等于x的角性质定义域-1,1-1,1(-,+)(-,+)值域-,0,(-,)(0,)单调性在-1,1上是增函数在-1,1上是减函数在(-,+)上是增数在(-,+)上是减函数奇偶性arcsin(-x)=-arcsinxarccos(-x)=-arccosxarctan(-x)=-arctanxarccot(-x)=-arccotx周期性都不是同期函数恒等式sin(arcsinx)=x(x-1,1)arcsin(sinx)=x(x-,)cos(arccosx)=x(x-1,1) arccos(cosx)=x(x0,)tan(arctanx)=x(xR)arctan(tanx)=x(x(

4、-,))cot(arccotx)=x(xR)arccot(cotx)=x(x(0,)互余恒等式arcsinx+arccosx=(x-1,1)arctanx+arccotx=(XR)三角函数公式两角和公式sin(A+B) = sinAcosB+cosAsinBsin(A-B) = sinAcosB-cosAsinBcos(A+B) = cosAcosB-sinAsinBcos(A-B) = cosAcosB+sinAsinBtan(A+B) =tan(A-B) =cot(A+B) =cot(A-B) =倍角公式tan2A =Sin2A=2SinACosACos2A = Cos2A-Sin2A=2

5、Cos2A-1=1-2sin2A三倍角公式sin3A = 3sinA-4(sinA)3cos3A = 4(cosA)3-3cosAtan3a = tanatan(+a)tan(-a)半角公式sin()=cos()=tan()=cot()=tan()=和差化积sina+sinb=2sincossina-sinb=2cossincosa+cosb = 2coscoscosa-cosb = -2sinsintana+tanb=积化和差sinasinb = -cos(a+b)-cos(a-b)cosacosb = cos(a+b)+cos(a-b)sinacosb = sin(a+b)+sin(a-b

6、)cosasinb = sin(a+b)-sin(a-b)诱导公式sin(-a) = -sinacos(-a) = cosasin(-a) = cosacos(-a) = sinasin(+a) = cosacos(+a) = -sinasin(-a) = sinacos(-a) = -cosasin(+a) = -sinacos(+a) = -cosatgA=tanA =万能公式sina=cosa=tana=其它公式asina+bcosa=sin(a+c) 其中tanc=asin(a)-bcos(a) = cos(a-c) 其中tan(c)=1+sin(a) =(sin+cos)21-sin

7、(a) = (sin-cos)2其他非重点三角函数csc(a) =sec(a) =双曲函数sinh(a)=cosh(a)=tg h(a)=公式一设为任意角,终边相同的角的同一三角函数的值相等:sin(2k)= sincos(2k)= costan(2k)= tancot(2k)= cot公式二设为任意角,+的三角函数值与的三角函数值之间的关系:sin()= -sincos()= -costan()= tancot()= cot公式三任意角与 -的三角函数值之间的关系:sin(-)= -sincos(-)= costan(-)= -tancot(-)= -cot公式四利用公式二和公式三可以得到-

8、与的三角函数值之间的关系:sin(-)= sincos(-)= -costan(-)= -tancot(-)= -cot公式五利用公式-和公式三可以得到2-与的三角函数值之间的关系:sin(2-)= -sincos(2-)= costan(2-)= -tancot(2-)= -cot公式六及与的三角函数值之间的关系:sin(+)= coscos(+)= -sintan(+)= -cotcot(+)= -tansin(-)= coscos(-)= sintan(-)= cotcot(-)= tansin(+)= -coscos(+)= sintan(+)= -cotcot(+)= -tansin

9、(-)= -coscos(-)= -sintan(-)= cotcot(-)= tan(以上kZ)这个物理常用公式我费了半天的劲才输进来,希望对大家有用Asin(t+)+ Bsin(t+) =sin三角函数公式证明(全部)公式表达式乘法与因式分解a2-b2=(a+b)(a-b)a3+b3=(a+b)(a2-ab+b2)a3-b3=(a-b)(a2+ab+b2)三角不等式|a+b|a|+|b|a-b|a|+|b|a|b-bab|a-b|a|-|b|-|a|a|a|一元二次方程的解-b+(b2-4ac)/2a -b-b+(b2-4ac)/2a根与系数的关系X1+X2=-b/aX1*X2=c/a注:

10、韦达定理判别式 b2-4a=0 注:方程有相等的两实根b2-4ac0 注:方程有一个实根b2-4ac0抛物线标准方程y2=2px y2=-2px x2=2py x2=-2py直棱柱侧面积S=c*h斜棱柱侧面积S=c*h正棱锥侧面积S=1/2c*h正棱台侧面积S=1/2(c+c)h圆台侧面积S=1/2(c+c)l=pi(R+r)l球的表面积S=4pi*r2圆柱侧面积S=c*h=2pi*h圆锥侧面积S=1/2*c*l=pi*r*l弧长公式l=a*ra是圆心角的弧度数r 0扇形面积公式s=1/2*l*r锥体体积公式V=1/3*S*H圆锥体体积公式V=1/3*pi*r2h斜棱柱体积V=SL注:其中,S

11、是直截面面积, L是侧棱长柱体体积公式V=s*h圆柱体V=pi*r2h-三角函数 积化和差 和差化积公式记不住就自己推,用两角和差的正余弦:cos(A+B)=cosAcosB-sinAsinBcos(A-B)=cosAcosB+sinAsinB这两式相加或相减,可以得到2组积化和差:相加:cosAcosB=cos(A+B)+cos(A-B)/2相减:sinAsinB=-cos(A+B)-cos(A-B)/2sin(A+B)=sinAcosB+sinBcosAsin(A-B)=sinAcosB-sinBcosA这两式相加或相减,可以得到2组积化和差:相加:sinAcosB=sin(A+B)+si

12、n(A-B)/2相减:sinBcosA=sin(A+B)-sin(A-B)/2这样一共4组积化和差,然后倒过来就是和差化积了正加正 正在前正减正 余在前余加余 都是余余减余 没有余还负正余正加 余正正减余余余加 正正余减还负3.三角形中的一些结论:(不要求记忆)(1)tanA+tanB+tanC=tanAtanBtanC(2)sinA+tsinB+sinC=4cos(A/2)cos(B/2)cos(C/2)(3)cosA+cosB+cosC=4sin(A/2)sin(B/2)sin(C/2)+1(4)sin2A+sin2B+sin2C=4sinAsinBsinC(5)cos2A+cos2B+cos2C=-4cosAcosBcosC-1

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 生活休闲 > 在线阅读


备案号:宁ICP备20000045号-2

经营许可证:宁B2-20210002

宁公网安备 64010402000987号