《全等三角形证明中考题选(答案齐全).doc》由会员分享,可在线阅读,更多相关《全等三角形证明中考题选(答案齐全).doc(20页珍藏版)》请在三一办公上搜索。
1、新人教版八年级上学期全等三角形中考证明题一解答题(共10小题)1(2013泉州)如图,已知AD是ABC的中线,分别过点B、C作BEAD于点E,CFAD交AD的延长线于点F,求证:BE=CF2(2013河南)如图1,将两个完全相同的三角形纸片ABC和DEC重合放置,其中C=90,B=E=30(1)操作发现如图2,固定ABC,使DEC绕点C旋转,当点D恰好落在AB边上时,填空:线段DE与AC的位置关系是_;设BDC的面积为S1,AEC的面积为S2,则S1与S2的数量关系是_(2)猜想论证当DEC绕点C旋转到如图3所示的位置时,小明猜想(1)中S1与S2的数量关系仍然成立,并尝试分别作出了BDC和A
2、EC中BC、CE边上的高,请你证明小明的猜想(3)拓展探究已知ABC=60,点D是角平分线上一点,BD=CD=4,DEAB交BC于点E(如图4)若在射线BA上存在点F,使SDCF=SBDE,请直接写出相应的BF的长3(2013大庆)如图,把一个直角三角形ACB(ACB=90)绕着顶点B顺时针旋转60,使得点C旋转到AB边上的一点D,点A旋转到点E的位置F,G分别是BD,BE上的点,BF=BG,延长CF与DG交于点H(1)求证:CF=DG;(2)求出FHG的度数4(2012阜新)(1)如图,在ABC和ADE中,AB=AC,AD=AE,BAC=DAE=90当点D在AC上时,如图1,线段BD、CE有
3、怎样的数量关系和位置关系?直接写出你猜想的结论;将图1中的ADE绕点A顺时针旋转角(090),如图2,线段BD、CE有怎样的数量关系和位置关系?请说明理由(2)当ABC和ADE满足下面甲、乙、丙中的哪个条件时,使线段BD、CE在(1)中的位置关系仍然成立?不必说明理由甲:AB:AC=AD:AE=1,BAC=DAE90;乙:AB:AC=AD:AE1,BAC=DAE=90;丙:AB:AC=AD:AE1,BAC=DAE905(2009仙桃)如图所示,在ABC中,D、E分别是AB、AC上的点,DEBC,如图,然后将ADE绕A点顺时针旋转一定角度,得到图,然后将BD、CE分别延长至M、N,使DM=BD,
4、EN=CE,得到图,请解答下列问题:(1)若AB=AC,请探究下列数量关系:在图中,BD与CE的数量关系是_;在图中,猜想AM与AN的数量关系、MAN与BAC的数量关系,并证明你的猜想;(2)若AB=kAC(k1),按上述操作方法,得到图,请继续探究:AM与AN的数量关系、MAN与BAC的数量关系,直接写出你的猜想,不必证明6(2008台州)CD经过BCA顶点C的一条直线,CA=CBE,F分别是直线CD上两点,且BEC=CFA=(1)若直线CD经过BCA的内部,且E,F在射线CD上,请解决下面两个问题:如图1,若BCA=90,=90,则BE_CF;EF_|BEAF|(填“”,“”或“=”);如
5、图2,若0BCA180,请添加一个关于与BCA关系的条件_,使中的两个结论仍然成立,并证明两个结论成立(2)如图3,若直线CD经过BCA的外部,=BCA,请提出EF,BE,AF三条线段数量关系的合理猜想(不要求证明)7(2007绍兴)课外兴趣小组活动时,许老师出示了如下问题:如图1,己知四边形ABCD中,AC平分DAB,DAB=60,B与D互补,求证:AB+AD=AC小敏反复探索,不得其解她想,若将四边形ABCD特殊化,看如何解决该问题(1)特殊情况入手添加条件:“B=D”,如图2,可证AB+AD=AC;(请你完成此证明)(2)解决原来问题受到(1)的启发,在原问题中,添加辅助线:如图3,过C
6、点分别作AB、AD的垂线,垂足分别为E、F(请你补全证明)8(2007常德)如图,已知AB=AC,(1)若CE=BD,求证:GE=GD;(2)若CE=mBD(m为正数),试猜想GE与GD有何关系(只写结论,不证明)9(2006泰安)(1)已知:如图,在AOB和COD中,OA=OB,OC=OD,AOB=COD=60,求证:AC=BD;APB=60度;(2)如图,在AOB和COD中,若OA=OB,OC=OD,AOB=COD=,则AC与BD间的等量关系式为_;APB的大小为_;(3)如图,在AOB和COD中,若OA=kOB,OC=kOD(k1),AOB=COD=,则AC与BD间的等量关系式为_;AP
7、B的大小为 10(2005南宁)(A类)如图,DEAB、DFAC垂足分别为E、F请你从下面三个条件中,再选出两个作为已知条件,另一个为结论,推出一个正确的命题(只需写出一种情况)AB=AC;BD=CD;BE=CF已知:DEAB、DFAC,垂足分别为E、F,AB=AC,BD=CD求证:BE=CF已知:DEAB、DFAC,垂足分别为E、F,AB=AC,BE=CF求证:BD=CD已知:DEAB、DFAC,垂足分别为E、F,BD=CD,BE=CF求证:AB=AC(B类)如图,EGAF,请你从下面三个条件中,再选两个作为已知条件,另一个为结论,推出一个正确的命题(只需写出一种情况)AB=AC;DE=DF
8、;BE=CF已知:EGAF,AB=AC,DE=DF求证:BE=CF参考答案与试题解析一解答题(共10小题)1(2013泉州)如图,已知AD是ABC的中线,分别过点B、C作BEAD于点E,CFAD交AD的延长线于点F,求证:BE=CF考点:全等三角形的判定与性质1125860专题:证明题分析:根据中线的定义可得BD=CD,然后利用“角角边”证明BDE和CDF全等,根据全等三角形对应边相等即可得证解答:证明:AD是ABC的中线,BD=CD,BEAD,CFAD,BED=CFD=90,在BDE和CDF中,BDECDF(AAS),BE=CF点评:本题考查了全等三角形的判定与性质,利用三角形全等证明边相等
9、是常用的方法之一,要熟练掌握并灵活运用2(2013河南)如图1,将两个完全相同的三角形纸片ABC和DEC重合放置,其中C=90,B=E=30(1)操作发现如图2,固定ABC,使DEC绕点C旋转,当点D恰好落在AB边上时,填空:线段DE与AC的位置关系是DEAC;设BDC的面积为S1,AEC的面积为S2,则S1与S2的数量关系是S1=S2(2)猜想论证当DEC绕点C旋转到如图3所示的位置时,小明猜想(1)中S1与S2的数量关系仍然成立,并尝试分别作出了BDC和AEC中BC、CE边上的高,请你证明小明的猜想(3)拓展探究已知ABC=60,点D是角平分线上一点,BD=CD=4,DEAB交BC于点E(
10、如图4)若在射线BA上存在点F,使SDCF=SBDE,请直接写出相应的BF的长考点:全等三角形的判定与性质1125860专题:几何综合题;压轴题分析:(1)根据旋转的性质可得AC=CD,然后求出ACD是等边三角形,根据等边三角形的性质可得ACD=60,然后根据内错角相等,两直线平行解答;根据等边三角形的性质可得AC=AD,再根据直角三角形30角所对的直角边等于斜边的一半求出AC=AB,然后求出AC=BE,再根据等边三角形的性质求出点C到AB的距离等于点D到AC的距离,然后根据等底等高的三角形的面积相等解答;(2)根据旋转的性质可得BC=CE,AC=CD,再求出ACN=DCM,然后利用“角角边”
11、证明ACN和DCM全等,根据全等三角形对应边相等可得AN=DM,然后利用等底等高的三角形的面积相等证明;(3)过点D作DF1BE,求出四边形BEDF1是菱形,根据菱形的对边相等可得BE=DF1,然后根据等底等高的三角形的面积相等可知点F1为所求的点,过点D作DF2BD,求出F1DF2=60,从而得到DF1F2是等边三角形,然后求出DF1=DF2,再求出CDF1=CDF2,利用“边角边”证明CDF1和CDF2全等,根据全等三角形的面积相等可得点F2也是所求的点,然后在等腰BDE中求出BE的长,即可得解解答:解:(1)DEC绕点C旋转点D恰好落在AB边上,AC=CD,BAC=90B=9030=60
12、,ACD是等边三角形,ACD=60,又CDE=BAC=60,ACD=CDE,DEAC;B=30,C=90,CD=AC=AB,BD=AD=AC,根据等边三角形的性质,ACD的边AC、AD上的高相等,BDC的面积和AEC的面积相等(等底等高的三角形的面积相等),即S1=S2;故答案为:DEAC;S1=S2;(2)如图,DEC是由ABC绕点C旋转得到,BC=CE,AC=CD,ACN+BCN=90,DCM+BCN=18090=90,ACN=DCM,在ACN和DCM中,ACNDCM(AAS),AN=DM,BDC的面积和AEC的面积相等(等底等高的三角形的面积相等),即S1=S2;(3)如图,过点D作DF
13、1BE,易求四边形BEDF1是菱形,所以BE=DF1,且BE、DF1上的高相等,此时SDCF=SBDE,过点D作DF2BD,ABC=60,F1DF2=ABC=60,DF1F2是等边三角形,DF1=DF2,BD=CD,ABC=60,点D是角平分线上一点,DBC=DCB=60=30,CDF1=18030=150,CDF2=36015060=150,CDF1=CDF2,在CDF1和CDF2中,CDF1CDF2(SAS),点F2也是所求的点,ABC=60,点D是角平分线上一点,DEAB,DBC=BDE=ABD=60=30,又BD=4,BE=4cos30=2=,BF1=,BF2=BF1+F1F2=+=,
14、故BF的长为或点评:本题考查了全等三角形的判定与性质,三角形的面积,等边三角形的判定与性质,直角三角形30角所对的直角边等于斜边的一半的性质,熟练掌握等底等高的三角形的面积相等,以及全等三角形的面积相等是解题的关键,(3)要注意符合条件的点F有两个3(2013大庆)如图,把一个直角三角形ACB(ACB=90)绕着顶点B顺时针旋转60,使得点C旋转到AB边上的一点D,点A旋转到点E的位置F,G分别是BD,BE上的点,BF=BG,延长CF与DG交于点H(1)求证:CF=DG;(2)求出FHG的度数考点:全等三角形的判定与性质1125860分析:(1)在CBF和DBG中,利用SAS即可证得两个三角形
15、全等,利用全等三角形的对应边相等即可证得;(2)根据全等三角形的对应角相等,即可证得DHF=CBF=60,从而求解解答:(1)证明:在CBF和DBG中,CBFDBG(SAS),CF=DG;(2)解:CBFDBG,BCF=BDG,又CFB=DFH,DHF=CBF=60,FHG=180DHF=18060=120点评:本题考查了全等三角形的判定与性质,正确证明三角形全等是关键4(2012阜新)(1)如图,在ABC和ADE中,AB=AC,AD=AE,BAC=DAE=90当点D在AC上时,如图1,线段BD、CE有怎样的数量关系和位置关系?直接写出你猜想的结论;将图1中的ADE绕点A顺时针旋转角(090)
16、,如图2,线段BD、CE有怎样的数量关系和位置关系?请说明理由(2)当ABC和ADE满足下面甲、乙、丙中的哪个条件时,使线段BD、CE在(1)中的位置关系仍然成立?不必说明理由甲:AB:AC=AD:AE=1,BAC=DAE90;乙:AB:AC=AD:AE1,BAC=DAE=90;丙:AB:AC=AD:AE1,BAC=DAE90考点:全等三角形的判定与性质1125860专题:几何综合题;压轴题分析:(1)BD=CE,BDCE根据全等三角形的判定定理SAS推知ABDACE,然后由全等三角形的对应边相等证得BD=CE、对应角相等ABF=ECA;然后在ABD和CDF中,由三角形内角和定理可以求得CFD
17、=90,即BDCF;BD=CE,BDCE根据全等三角形的判定定理SAS推知ABDACE,然后由全等三角形的对应边相等证得BD=CE、对应角相等ABF=ECA;作辅助线(延长BD交AC于F,交CE于H)BH构建对顶角ABF=HCF,再根据三角形内角和定理证得BHC=90;(2)根据结论、的证明过程知,BAC=DFC(或FHC=90)时,该结论成立了,所以本条件中的BAC=DAE90不合适解答:解:(1)结论:BD=CE,BDCE;结论:BD=CE,BDCE1分理由如下:BAC=DAE=90BACDAC=DAEDAC,即BAD=CAE1分在ABD与ACE中,ABDACE(SAS)BD=CE1分延长
18、BD交AC于F,交CE于H在ABF与HCF中,ABF=HCF,AFB=HFCCHF=BAF=90BDCE3分(2)结论:乙AB:AC=AD:AE,BAC=DAE=902分点评:本题考查了全等三角形的判定与性质SSS,SAS,ASA,AAS,HL均可作为判定三角形全等的定理 注意:在全等的判定中,没有AAA(角角角)和SSA(边边角)(特例:直角三角形为HL,因为勾股定理,只要确定了斜边和一条直角边,另一直角边也确定,属于SSS),因为这两种情况都不能唯一确定三角形的形状;另外三条中线(或高、角平分线)分别对应相等的两个三角形也全等5(2009仙桃)如图所示,在ABC中,D、E分别是AB、AC上
19、的点,DEBC,如图,然后将ADE绕A点顺时针旋转一定角度,得到图,然后将BD、CE分别延长至M、N,使DM=BD,EN=CE,得到图,请解答下列问题:(1)若AB=AC,请探究下列数量关系:在图中,BD与CE的数量关系是;在图中,猜想AM与AN的数量关系、MAN与BAC的数量关系,并证明你的猜想;(2)若AB=kAC(k1),按上述操作方法,得到图,请继续探究:AM与AN的数量关系、MAN与BAC的数量关系,直接写出你的猜想,不必证明考点:全等三角形的判定1125860专题:压轴题;探究型分析:(1)根据题意和旋转的性质可知AECADB,所以BD=CE;根据题意可知CAE=BAD,AB=AC
20、,AD=AE,所以得到BADCAE,在ABM和ACN中,DM=BD,EN=CE,可证ABMACN,所以AM=AN,即MAN=BAC(2)直接类比(1)中结果可知AM=kAN,MAN=BAC解答:解:(1)BD=CE;AM=AN,MAN=BAC,DAE=BAC,CAE=BAD,在BAD和CAE中CAEBAD(SAS),ACE=ABD,DM=BD,EN=CE,BM=CN,在ABM和ACN中,ABMACN(SAS),AM=AN,BAM=CAN,即MAN=BAC;(2)AM=kAN,MAN=BAC点评:本题考查三角形全等的判定方法和性质判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、H
21、L判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件本题还要会根据所求的结论运用类比的方法求得同类题目6(2008台州)CD经过BCA顶点C的一条直线,CA=CBE,F分别是直线CD上两点,且BEC=CFA=(1)若直线CD经过BCA的内部,且E,F在射线CD上,请解决下面两个问题:如图1,若BCA=90,=90,则BE=CF;EF=|BEAF|(填“”,“”或“=”);如图2,若0BCA180,请添加一个关于与BCA关系的条件+BCA=180,使中的两个结论仍然成立,并证明两个结论成立(2)如图3,若直线CD经过BCA的外部
22、,=BCA,请提出EF,BE,AF三条线段数量关系的合理猜想(不要求证明)考点:直角三角形全等的判定;三角形内角和定理1125860专题:几何综合题;压轴题分析:由题意推出CBE=ACF,再由AAS定理证BCECAF,继而得答案解答:解:(1)BCA=90,=90,BCE+CBE=90,BCE+ACF=90,CBE=ACF,CA=CB,BEC=CFA;BCECAF,BE=CF;EF=|BEAF|所填的条件是:+BCA=180证明:在BCE中,CBE+BCE=180BEC=180BCA=180,CBE+BCE=BCA又ACF+BCE=BCA,CBE=ACF,又BC=CA,BEC=CFA,BCEC
23、AF(AAS)BE=CF,CE=AF,又EF=CFCE,EF=|BEAF|(2)EF=BE+AF点评:本题综合考查全等三角形、等边三角形和四边形的有关知识注意对三角形全等,相似的综合应用7(2007绍兴)课外兴趣小组活动时,许老师出示了如下问题:如图1,己知四边形ABCD中,AC平分DAB,DAB=60,B与D互补,求证:AB+AD=AC小敏反复探索,不得其解她想,若将四边形ABCD特殊化,看如何解决该问题(1)特殊情况入手添加条件:“B=D”,如图2,可证AB+AD=AC;(请你完成此证明)(2)解决原来问题受到(1)的启发,在原问题中,添加辅助线:如图3,过C点分别作AB、AD的垂线,垂足
24、分别为E、F(请你补全证明)考点:直角三角形全等的判定1125860专题:证明题;压轴题;开放型分析:(1)如果:“B=D”,根据B与D互补,那么B=D=90,又因为DAC=BAC=30,因此我们可在直角三角形ADC和ABC中得出AD=AB=AC,那么AD+AB=AC(2)按(1)的思路,作好辅助线后,我们只要证明三角形CFD和BCD全等即可得到(1)的条件根据AAS可证两三角形全等,DF=BE然后按照(1)的解法进行计算即可解答:证明:(1)B与D互补,B=D,B=D=90,CAD=CAB=DAB=30,在ADC中,cos30=,在ABC中,cos30=,AB=AC,AD=AB+AD=(2)
25、由(1)知,AE+AF=AC,AC为角平分线,CFCD,CEAB,CE=CF而ABC与D互补,ABC与CBE也互补,D=CBE在RtCDF与RtCBE中,RtCDFRtCBEDF=BEAB+AD=AB+(AF+FD)=(AB+BE)+AF=AE+AF=AC点评:本题考查了直角三角形全等的判定及性质;通过辅助线来构建全等三角形是解题的常用方法,也是解决本题的关键8(2007常德)如图,已知AB=AC,(1)若CE=BD,求证:GE=GD;(2)若CE=mBD(m为正数),试猜想GE与GD有何关系(只写结论,不证明)考点:全等三角形的判定与性质1125860专题:证明题;压轴题;探究型分析:(1)
26、要证GE=GD,需证GDFGEC,由已知条件可根据AAS判定(2)若CE=mBD(m为正数),那么GE=mGD解答:证明:(1)过D作DFCE,交BC于F,则E=GDFAB=AC,ACB=ABCDFCE,DFB=ACB,DFB=ACB=ABCDF=DBCE=BD,DF=CE,在GDF和GEC中,GDFGEC(AAS)GE=GD(2)GE=mGD点评:本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL本题的辅助线是解决题目的关键9(2006泰安)(1)已知:如图,在AOB和COD中,OA=OB,OC=OD,AOB=COD=60,求证:AC=BD;A
27、PB=60度;(2)如图,在AOB和COD中,若OA=OB,OC=OD,AOB=COD=,则AC与BD间的等量关系式为AC=BD;APB的大小为;(3)如图,在AOB和COD中,若OA=kOB,OC=kOD(k1),AOB=COD=,则AC与BD间的等量关系式为AC=kBD;APB的大小为180考点:全等三角形的判定;三角形内角和定理1125860专题:探究型分析:(1)分析结论AC=BD可知,需要证明AOCBOD,围绕这个目标找全等的条件;(2)与图比较,图形条件发生了变化,仍然可以证明AOCBOD,方法类似;(3)转化为证明AOCBOD解答:解:(1)AOB=COD=60,AOB+BOC=
28、COD+BOC即:AOC=BOD又OA=OB,OC=OD,AOCBODAC=BD由得:OAC=OBD,AEO=PEB,APB=180(BEP+OBD),AOB=180(OAC+AEO),APB=AOB=60(2)AC=BD,(3)AC=kBD,180点评:三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件10(2005南宁)(A类)如图,DEAB、DFAC垂足分别为E、F请你从下面三个条件中,再选出两个作为已知条件,另一个为结论,推出一个正确的命题(只需写出一种情况
29、)AB=AC;BD=CD;BE=CF已知:DEAB、DFAC,垂足分别为E、F,AB=AC,BD=CD求证:BE=CF已知:DEAB、DFAC,垂足分别为E、F,AB=AC,BE=CF求证:BD=CD已知:DEAB、DFAC,垂足分别为E、F,BD=CD,BE=CF求证:AB=AC(B类)如图,EGAF,请你从下面三个条件中,再选两个作为已知条件,另一个为结论,推出一个正确的命题(只需写出一种情况)AB=AC;DE=DF;BE=CF已知:EGAF,AB=AC,DE=DF求证:BE=CF友情提醒:若两题都做的同学,请你确认以哪类题记分,你的选择是A类类题考点:全等三角形的判定与性质1125860专题:证明题;开放型分析:本题是开放题,应先确定选择哪对三角形,对应三角形全等条件求解;再根据全等三角形的性质得出结论解答:解:(A类)已知:,AB=AC,BD=CD求证:BE=CF证明:AB=AC,B=CDEAB,DFAC,BED=CFD=90在BDE和CDF中BDECDFBE=CF已知:,AB=AC,DE=DF,求证:BE=CF证明:EGAF,GED=F,BGE=BCAAB=AC,B=BCA,B=BGE,BE=EG在DEG和DFC中DEGDFC,EG=CF,BE=CF点评:这是一道考查三角形全等的识别方法的开放性题目,答案可有多种同时还考查了全等三角形的性质