PN Diode ProjectPN结二极管项目.doc

上传人:laozhun 文档编号:4136321 上传时间:2023-04-07 格式:DOC 页数:6 大小:60.50KB
返回 下载 相关 举报
PN Diode ProjectPN结二极管项目.doc_第1页
第1页 / 共6页
PN Diode ProjectPN结二极管项目.doc_第2页
第2页 / 共6页
PN Diode ProjectPN结二极管项目.doc_第3页
第3页 / 共6页
PN Diode ProjectPN结二极管项目.doc_第4页
第4页 / 共6页
PN Diode ProjectPN结二极管项目.doc_第5页
第5页 / 共6页
点击查看更多>>
资源描述

《PN Diode ProjectPN结二极管项目.doc》由会员分享,可在线阅读,更多相关《PN Diode ProjectPN结二极管项目.doc(6页珍藏版)》请在三一办公上搜索。

1、ACUTE: PN Diode ModelingDragica Vasileska and Gerhard KlimeckEQUILIBRIUM SOLVER: You are provided with a MATLAB script of an equilibrium 1D Poisson equation solver for a pn-diode. Please try to understand and run the code for the following doping densities:(a) NA = 1016 cm-3, ND =1016 cm-3(b) NA = 1

2、016 cm-3, ND =1018 cm-3(c) NA = 1018 cm-3, ND =1018 cm-3For each of these cases plot the potential and electric field profiles, the electron and hole densities and the total charge densities. From these plots extract the width of the depletion region and the peak electric field. Compare your simulat

3、ed data with the depletion charge approximation analytical results. NON-EQUILIBRIUM SOLVER: Develop a one-dimensional (1D) drift-diffusion simulator for modeling pn-junctions (diodes) under forward and reverse bias conditions. Include both types of carriers in your model (electrons and holes). Use t

4、he finite-difference expressions for the electron and hole current continuity equations that utilize the Sharfetter-Gummel discretization scheme. Model: Silicon diode, with permittivity and intrinsic carrier concentration at T=300K. In all your simulations assume that T=300K. Use concentration-depen

5、dent and field-dependent mobility models and SRH generation-recombination process. Assume ohmic contacts and charge neutrality at both ends to get the appropriate boundary conditions for the potential and the electron and hole concentrations. For the electron and hole mobility use 1500 and 1000 cm2/

6、V-s, respectively. For the SRH generation-recombination, use TAUN0=TAUP0=0.1 us. To simplify your calculations, assume that the trap energy level coincides with the intrinsic level.Doping: Use and as a net doping of the p- and n-regions, respectively.Numerical methods: Use the LU decomposition metho

7、d for the solution of the 1D Poisson and the two 1D continuity equations for electrons and holes individually. Use Gummels decoupled scheme, described in the class, to solve the resultant set of coupled set of algebraic equations.Outputs: Plot the conduction band edge under equilibrium conditions (n

8、o current flow) and for VA=0.625 V. Plot the electron and hole densities under equilibrium conditions (no current flow) and for VA=0.625 V. Plot the electric field profile under equilibrium conditions (no current flow) and for VA=0.625 V. Vary the Anode bias from 0 to 0.625 V, in voltage increments

9、that are fraction of the thermal voltage , to have stable convergence. Plot the resulting I-V characteristics. The current will be in A/unit area, since you are doing 1D modeling. Check the conservation of current when going from the cathode to the anode, which also means conservation of particles i

10、n your system. For the calculation of the current density, use the results given in the notes. For =0.625 V, plot the position of the electron and hole quasi-Fermi levels, with respect to the equilibrium Fermi level, assumed to be the reference energy level.Final note: When you submit your project r

11、eport, in addition to the final results, give a brief explanation of the problem you are solving with reference to the listing of your program that you need to turn in with the report. % % % % 1D Poisson Equation Solver for pn Diodes % % % % % Defining the Fundamental and Material Constants % q = 1.

12、602E-19; % C or J/eVkb = 1.38E-23; % J/Keps = 1.05E-12; % This includes the eps = 11.7 for Si F/cmT = 300; % Kni = 1.45E10; % Intrinsic carrier concentration 1/cm3Vt = kb*T/q; % eVRNc = 2.82E19; % Effective DOS of the conduction BanddEc = Vt*log(RNc/ni); % Define Doping Values % Na = 1E18; % 1/cm3Nd

13、 = 1E18; % 1/cm3 % Calculate relevant parameters for the simulation % Vbi = Vt*log(Na*Nd/(ni*ni);W = sqrt(2*eps*(Na+Nd)*Vbi/(q*Na*Nd) % cmWn = W*sqrt(Na/(Na+Nd) % cmWp = W*sqrt(Nd/(Na+Nd) % cmWone = sqrt(2*eps*Vbi/(q*Na) % cmE_p = q*Nd*Wn/eps % V/cmLdn = sqrt(eps*Vt/(q*Nd);Ldp = sqrt(eps*Vt/(q*Na);L

14、di = sqrt(eps*Vt/(q*ni); % Calculate relevant parameters in an input file % % Write to a filesave input_params.txt Na Nd Vbi W Wn Wp E_p Ldn Ldp %Material_Constants %Define some material constants % Setting the size of the simulation domain based % on the analytical results for the width of the depl

15、etion regions% for a simple pn-diode % x_max = 0;if(x_max Wn) x_max = Wn;endif(x_max Ldp) dx=Ldp;enddx = dx/20; % Calculate the required number of grid points and renormalize dx % n_max = x_max/dx;n_max = round(n_max); dx = dx/Ldi; % Renormalize lengths with Ldi % Set up the doping C(x) = Nd(x) - Na

16、(x) that is normalized with ni % for i = 1:n_max if(i n_max/2) dop(i) = Nd/ni; endend % Initialize the potential based on the requirement of charge% neutrality throughout the whole structure for i = 1: n_max zz = 0.5*dop(i); if(zz 0) xx = zz*(1 + sqrt(1+1/(zz*zz); elseif(zz delta_max) delta_max=xx;

17、end %sprintf(delta_max = %d,delta_max) %k_iter = %d,k_iter, end %delta_max=max(abs(delta); % Test convergence and recalculate forcing function and % central coefficient b if necessary if(delta_max delta_acc) flag_conv = 1; else for i = 2: n_max-1 b(i) = -(2/dx2 + exp(fi(i) + exp(-fi(i); f(i) = exp(f

18、i(i) - exp(-fi(i) - dop(i) - fi(i)*(exp(fi(i) + exp(-fi(i); end endend % Write the results of the simulation in files % xx1(1) = dx*1e4;for i = 2:n_max-1 Ec(i) = dEc - Vt*fi(i); %Values from the second Node% ro(i) = -ni*(exp(fi(i) - exp(-fi(i) - dop(i); el_field1(i) = -(fi(i+1) - fi(i)*Vt/(dx*Ldi);

19、el_field2(i) = -(fi(i+1) - fi(i-1)*Vt/(2*dx*Ldi); n(i) = exp(fi(i); p(i) = exp(-fi(i); xx1(i) = xx1(i-1) + dx*Ldi*1e4;end Ec(1) = Ec(2);Ec(n_max) = Ec(n_max-1);xx1(n_max) = xx1(n_max-1) + dx*Ldi*1e4;el_field1(1) = el_field1(2);el_field2(1) = el_field2(2);el_field1(n_max) = el_field1(n_max-1);el_fiel

20、d2(n_max) = el_field2(n_max-1);nf = n*ni;pf = p*ni;ro(1) = ro(2);ro(n_max) = ro(n_max-1); figure(1)plot(xx1, fi)xlabel(x um);ylabel(Potential eV);title(Potential vs Position); figure(2)plot(xx1, el_field1)hold on;plot(xx1, el_field2)xlabel(x um);ylabel(Electric Field V/cm);title(Field Profile vs Pos

21、ition); figure(3)plot(xx1, nf)hold on;plot(xx1, pf)xlabel(x um);ylabel(Electron & Hole Densities 1/cm3);title(Electron & Hole Densities vs Position);legend(n,p);%axis(0 6.75 0 10.2e17) figure(4)plot(xx1, ro)xlabel(x um);ylabel(Total Charge Density 1/cm3);title(Total Charge Density vs Position);%axis(0.5 5 -3e17 8e17) %figure(5)%plot(xx1, n)%hold all%plot(xx1, p) save cond_band xx1 Ec;save tot_charge xx1 ro;save el_field xx1 el_field1 el_field2;save np_data xx1 nf pf;save pot_1 fi; clear all;

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 办公文档 > 其他范文


备案号:宁ICP备20000045号-2

经营许可证:宁B2-20210002

宁公网安备 64010402000987号