《论文(设计)基于三差解检测与修复GPS 载波相位周跳新方法.doc》由会员分享,可在线阅读,更多相关《论文(设计)基于三差解检测与修复GPS 载波相位周跳新方法.doc(10页珍藏版)》请在三一办公上搜索。
1、基于三差解检测与修复GPS载波相位周跳新方法*袁洪万卫星宁百齐李静年(中国科学院武汉物理与数学研究所,武汉,430071)A NEW CYCLE SLIP DETECTION AND CORRECTION METHOD USING TRIPLE DIFFERENCES SOLUTIONYuan hong, Wan Weixing, Ning Baiqi, Li Jingnian(Wuhan Institute of Physics and Mathematics, the Chinese Academy of Sciences, Wuhan, 430071)AbstractIn On-The-
2、Fly DGPS kinematic positioning, the cycle slip occurred in the period of integer ambiguity initializating must be carefully removed. In this paper, this kind of cycle slip is considered by using triple differences solution, and a new method is developed. A test is carried out and implies that the ne
3、w method is effective and reliable.KeywordsDGPS positioning, Cycle slip摘要对飞行中(On-The-Fly)初始化载波相位整周模糊度GPS动态差分定位而言,如果在整周模糊度初始化过程中发生载波相位周跳,将严重影响整周模糊度的确定。本文对已有的GPS静态差分定位中通过三差解检测与修复周跳的方法进行了推广,提出了一种适合于解决On-The-Fly整周模糊度初始化过程中周跳问题的新方法。新方法保持了静态情况下原有方法的特点,分析和利用实采数据进行的检验表明,新方法是有效和实用的。关键词GPS动态差分定位载波相位周跳分类号P2281
4、引言在利用GPS载波相位进行的精密差分定位中,要达到110-6D或更高的精度必须保证观测数据中无载波相位周跳,因此,正确检测与修复周跳是GPS数据处理中的一个关键问题。目前已有的方法1,大多是从观测中获得某种检验量,通过检验量的平滑性来检测和修复周跳。其中常用的有利用卡尔曼滤波对观测序列进行滤波,通过预测误差来检测和修复周跳的方法,对载波相位求差的方法,测码伪距平滑载波相位的方法,双频观测中的电离层残差法等。这些方法虽大都可用于动态的情况,但也都有其各自的弱点。比如,卡尔曼滤波的方法在移动站机动情况下的可靠性会有所降低,测码伪距的方法和电离层残差法则由于伪距精度有限或需要双频观测而限制了它们的
5、应用。静态情况下,基于三差解检测和修复周跳是一种有效的方法,然而它不能用于动态的情况。动态情况下,若整周模糊度已成功地固定,周跳可通过双差解加以修复,但这一方法不能用于飞行中初始化整周模糊度期间发生的周跳。近来,在我们开展的GPS实时动态差分定位(RTK)算法的研究中,对传统静态情况下基于三差解的方法进行了推广,提出了一种新方法来解决初始化整周模糊度期间的周跳问题。2观测方程与算法2.1基本观测方程动态情况下,在历元tk,对原始载波相位双差观测方程进行线性化处理可得1(1)其中:(2)(3)(4)(5)在式(15)中:p,q1,2为载波相位双差观测值;上下标中的1、2分别表示固定站和移动站,p
6、、q分别表示基准、非基准卫星;(Xs1,Ys1,Zs1)、(Xs2,Ys2,Zs2)为基准站坐标和移动站瞬时粗坐标;(xsp,ysp,zsp)、(xsq,ysq,zsq)为基准、非基准卫星瞬时坐标;为卫星至测站坐标点或粗坐标点的距离;(1,2,Y1,2,Z1,2)为基线改正量;为双差后的整周模糊度;为GPS信标L1的波长。对两个相邻历元tk、tk+1的双差观测方程求差可得三差观测方程(6)在式(6)中,共有6个待求量,因此,对从式(6)直接构成的观测方程组来说,很可能由于独立的三差观测量相对较少而使方程组不可解,即使可解也很弱,难以直接用于处理周跳问题。因此,有必要对观测方程作出适当的改化,以
7、加强观测方程组的强度,从而能通过对观测方程组进行求解来较明显地暴露原始观测量中的周跳。2.2三差观测方程的改化式(6)中,方程左端为可测量,右端第1项可从已知量计算得出,第2、3、4项含有待求量,不失一般性,以下仅进一步考察第2项。(7)式(7)中,右端第1项在数值上较大,与X1,2(tk)-X1,2(tk+1)处在同一数量级上,很可能大于L1的波长;式(7)右端第2项值得进一步考察,若定义(8)(9)则式(7)右端第2项中的lp,qx(tk)-lp,qx(tk+1)可写为(10)令xsp=xsp(tk+1)-xsp(tk),Xs2=Xs2(tk+1)-Xs2(tk),p2=p2(tk+1)-
8、p2(tk)它们的物理意义分别是卫星p和移动站的x坐标,以及星站距离在历元tk与tk+1之间的改变量。将上述新符号代入式(8)可得(11)综合运用式(7)式(11),对式(6)加以推导可得(12)其中(13)式(13)中,新符号lpy(tk,tk+1),lpz(tk,tk+1),lqy(tk,tk+1),lqz(tk,tk+1)的定义类似于式(8)、式(9)。再令R1,2(tk+1)=max|1,2(tk+1)|,|Y1,2(tk+1)|,|Z1,2(tk+1)|则有(14)对式(14)右端的量|lpx(tk,tk+1)|+|lpy(tk,tk+1)|+|lpz(tk,tk+1)|来说(15)
9、式(15)中,Ys2,Zs2,ysp,zsp的定义与前面的Xs2,xsp的定义类似。再定义Rs2(Xs2)2+(Ys2)2+(Zs2)21/2rsp(xsp)2+(ysp)2+(zsp)21/2其物理意义是移动站或卫星p在历元tk的坐标到历元tk+1坐标间的距离。考虑到不等式:|a|+|b|+|c|738(a2+b2+c2)1/2,则由式(15)可得(16)虽然式(16)是对卫星p得到的,但对卫星q可得类似的结果,同时考虑到星站距离一般大于20 000 km,因此,将式(16)代入式(14)可得(17)实际上,星站距离变化率大于800 m/s,GPS卫星运动速度一般不超过3 800 m/s,假
10、设移动站运动速度不大于250 m/s(暂不考虑高动态的情况),因此,由式(17)可得(18)其中R1,2(tk+1)反映移动站的粗定位精度,若采用伪距差分定位方式进行粗定位,R1,2(tk+1)一般小于10 m。在(tk+1-tk)分别取1 s,2 s, 3 s的采样间隔下,由式(18)可得|(tk,tk+1)|最大不超过0.84 cm,1.68 cm,和2.52 cm,远小于GPS信标L1波长,因此,就本文关心的检测和修复周跳的问题而言,在不大于3 s的采样间隔下,三差观测方程式(12)中的(tk,tk+1)项可以忽略。进一步定义以下符号X1,2(tk,tk+1)=X1,2(tk)-X1,2
11、(tk+1)Y1,2(tk,tk+1)=Y1,2(tk)-Y1,2(tk+1)Z1,2(tk,tk+1)=Z1,2(tk)-Z1,2(tk+1)则从式(12)可得新的观测方程(19)2.3具体算法与严格的三差观测方程式(6)相比,式(19)将待求量减少到3个,因而大大地加强了方程的强度,而当采样间隔不大于3 s时,式(19)引入的误差又远小于L1的波长,因此,依据式(19),采用与传统静态情况下基于三差解处理周跳问题相似的算法,完全可以处理动态下的问题。在具体算法上,可采取以下步骤:(1) 按式(19)组成三差观测方程组。(2) 对方程组中的待求量X1,2(tk,tk+1),Y1,2(tk,t
12、k+1),Z1,2(tk,tk+1)进行平差,以观测值残差的rms值为检验量检测周跳。考虑到观测方程改化带来的系统偏差小于3 cm,因此以rms3 cm作为周跳判决准则,若rms3 cm,则认为出现周跳,并作下一步处理;否则返回第1步进行下一历元的检验。(3) 在观测方程组中依次剔除一个卫星对应的观测方程,重新平差,若rms值小于3 cm,则确认被剔除卫星对应的观测量含有周跳,并进行下一步处理;若rms值仍大于3 cm,则说明发生周跳的观测量仍然包括在观测方程组中,这时需依次剔除下一颗卫星对应的观测方程;重复上述检验,若在上述检验中无论剔除哪一颗卫星对应的观测方程均不能得到小于3 cm的rms
13、值,则需考虑基准卫星发生周跳的可能性,这时可更改基准卫星,组成不含原基准卫星的观测方程组,进行平差以确认是否该卫星发生周跳;若仍然不能成功地确认发生周跳的卫星,则必然有两颗或更多的卫星同时发生周跳,这时需增加每次剔除卫星的个数,依照上述方法再作进一步检验,直至判断出所有发生周跳的卫星为止。(4) 以所有不含周跳的卫星组成新的观测方程组,解算X1,2(tk,tk+1),Y1,2(tk,tk+1),Z1,2(tk,tk+1),然后将其代入发生周跳卫星对应的观测方程,结合周跳的整数特性确定周跳的大小并加以修复。3算例以下算例所采用的观测数据是在1995年5月8日,利用两台Novatel 3151 R
14、型GPS接收机(单频机)采得的。采样间隔为3 s,基线长度大约在300 m左右,其中移动站置于一个专门设计的转台上,并以约3 m的半径作圆周运动,线速度约为2 m/s。数据采集期间,移动站一直处于运动状态,两台接收机始终锁定PRN3、PRN18、PRN22、PRN25、PRN28、PRN29、PRN31等7个卫星。选择PRN3号卫星为基准卫星组成观测方程组。图1给出了对该观测方程组进行平差得到的观测值残差的rms变化情况。图1中,rms在整个观测时段均较小,说明没有发生周跳。图1对式(19)构成观测方程组作平差得到的各观测历元下的均方误差rmsFig.1The rms value calcul
15、ated from observation equations (19)为检验新方法,我们人为地在双差观测数据中加入一些周跳,其中即包含单一卫星发生周跳的简单情况,也包含两颗卫星同时发生周跳以及基准卫星(PRN3号卫星)发生周跳等复杂情况。加入周跳的时间和周跳大小等见表1。图2给出的是将含周跳的观测数据代入式(19)的观测方程组进行平差得到的各历元下的rms。从图2可见,新方法在加入周跳的相应历元后能清晰地诊断出了周跳。表1在双差观测数据中加入周跳的时间和周跳大小Tab.1The value and time of cycle slip时间tGPSs263 600263 801263 9992
16、63 999264 200卫星号PRN18PRN22PRN25PRN28PRN3周跳大小/周+1-2+1-1+1图2与图1类似,但在原始双差观测数据中人为地加入了表1给出的周跳Fig.2Similar with Fig.1,but the cycle slips are added按本文前面给出的处理步骤,在观测方程组中依次剔除一颗或两颗卫星对应的观测方程,并在更换基准卫星的前提下剔除PRN3号卫星对应的观测方程,再次进行平差。图3给出了作以上处理后各历元下的rms。由图3可见,在剔除PRN18号卫星后,tGPS263 600 s处的rms明显小于3 cm,说明由图2诊断出的该历元处的周跳发生
17、于PRN18号卫星。同理,由图3可得在tGPS263 801 s、tGPS264 200 s处的周跳分别发生于PRN22和PRN3号卫星,而tGPS263 999 s处的周跳则同时发生在PRN25和PRN28两颗卫星上,与表1相符合。在发生周跳的历元中,以未发生周跳的卫星对应的方程构成观测方程组,解得式(19)右端的待求量,反过来代入发生周跳卫星对应的观测方程来估计周跳的大小。图4给出了发生周跳历元及其附近的周跳估计值。由图4并比照表1可见,在发生周跳的历元中,周跳估计值非常接近真实的周跳值,由周跳的整数特性可以方便地确定周跳的大小。图3在观测方程组中依次剔除一颗或两颗卫星对应的方程,再进行平
18、差得到的各历元下的rms(被剔除卫星的编号见每幅子图右上角)Fig.3Similar with Fig.1,but one or two satellites are removed from observation equations (The PRN number of removed satellites are listed on the right-up corner of each figure)图4发生周跳历元及其附近的周跳估计量(每幅子图对应的卫星的编号见右上角)Fig.4The calculated cycle slip value, (the respective sate
19、llite PRN number are listed on the right-up corner of each figure)4讨论及结论经过改化的三差观测方程是本文提出的新方法的基础,因而新方法的性能不会比静态情况下相应方法(采用严格的三差观测方程)的性能更好,同时也面临静态情况下相应方法同样的问题。比如,这种方法至少需要三个以上不含周跳的独立的三差观测量来诊断周跳,在已知哪一颗卫星发生周跳时,也必须有至少三个不含周跳的独立的三差观测量才能确定周跳的大小;当观测到的卫星的几何构型不佳时,有可能不能正确地检测和修复12周的较小的周跳;当多个卫星同时发生周跳时,有可能因为周跳量在平差中的互
20、相补偿而难于检测到周跳。此外,新方法也面临新的问题,即在采样间隔较大时,对三差观测方程的改化可能带来比较可观的误差,从而影响正确地检测与修复较小的周跳。虽然在本文的分析和算例中都假设采样间隔等于或小于3 s,但由于式(18)是对三差观测方程改化所带来误差的极限值的估计,实际的误差很可能比式(18)的估值来得小,因此在更大一些的采样间隔下,新方法也是可用的,当然这时可靠性会有所减低。我们曾在10 s的采样间隔下对新方法作过检测,结果表明在绝大部分情况下新方法都是可用的。此外,新方法需要较高精度的移动站粗坐标(比如10 m精度),这可通过伪距差分定位方式得到。实际上,如果采用具有窄距相关功能的接收
21、机或通过伪距平滑载波相位差分定位的方式获取移动站粗坐标,可增强新方法在更长一些的采样间隔下的可靠性。总之,在众多的周跳处理方法中,没有哪一种方法能适应所有的情况。新方法的突出特点是,它能够处理动态情况下,未知整周模糊度时的周跳问题,适用于单频接收机,且仅仅涉及两个相邻的观测历元。将它与一些已有的方法结合使用,是完全可以设计出比较坚固的周跳处理软件模块的。*收稿日期:1997-05-26, 截稿日期: 1998-01-20。袁洪,男,29岁,副研究员,博士。国家自然科学基金和国家杰出青年基金部分资助。5参考文献1Leick A. GPS Satellite Surveying. 2nd ed.
22、A wiley-Interscience Publication. John Wiley & Sons, INC,1995Editors note: Judson Jones is a meteorologist, journalist and photographer. He has freelanced with CNN for four years, covering severe weather from tornadoes to typhoons. Follow him on Twitter: jnjonesjr (CNN) - I will always wonder what i
23、t was like to huddle around a shortwave radio and through the crackling static from space hear the faint beeps of the worlds first satellite - Sputnik. I also missed watching Neil Armstrong step foot on the moon and the first space shuttle take off for the stars. Those events were way before my time
24、.As a kid, I was fascinated with what goes on in the sky, and when NASA pulled the plug on the shuttle program I was heartbroken. Yet the privatized space race has renewed my childhood dreams to reach for the stars.As a meteorologist, Ive still seen many important weather and space events, but right
25、 now, if you were sitting next to me, youd hear my foot tapping rapidly under my desk. Im anxious for the next one: a space capsule hanging from a crane in the New Mexico desert.Its like the set for a George Lucas movie floating to the edge of space.You and I will have the chance to watch a man take
26、 a leap into an unimaginable free fall from the edge of space - live.The (lack of) air up there Watch man jump from 96,000 feet Tuesday, I sat at work glued to the live stream of the Red Bull Stratos Mission. I watched the balloons positioned at different altitudes in the sky to test the winds, know
27、ing that if they would just line up in a vertical straight line we would be go for launch.I feel this mission was created for me because I am also a journalist and a photographer, but above all I live for taking a leap of faith - the feeling of pushing the envelope into uncharted territory.The guy w
28、ho is going to do this, Felix Baumgartner, must have that same feeling, at a level I will never reach. However, it did not stop me from feeling his pain when a gust of swirling wind kicked up and twisted the partially filled balloon that would take him to the upper end of our atmosphere. As soon as
29、the 40-acre balloon, with skin no thicker than a dry cleaning bag, scraped the ground I knew it was over.How claustrophobia almost grounded supersonic skydiverWith each twist, you could see the wrinkles of disappointment on the face of the current record holder and capcom (capsule communications), C
30、ol. Joe Kittinger. He hung his head low in mission control as he told Baumgartner the disappointing news: Mission aborted.The supersonic descent could happen as early as Sunday.The weather plays an important role in this mission. Starting at the ground, conditions have to be very calm - winds less t
31、han 2 mph, with no precipitation or humidity and limited cloud cover. The balloon, with capsule attached, will move through the lower level of the atmosphere (the troposphere) where our day-to-day weather lives. It will climb higher than the tip of Mount Everest (5.5 miles/8.85 kilometers), drifting
32、 even higher than the cruising altitude of commercial airliners (5.6 miles/9.17 kilometers) and into the stratosphere. As he crosses the boundary layer (called the tropopause), he can expect a lot of turbulence.The balloon will slowly drift to the edge of space at 120,000 feet (22.7 miles/36.53 kilo
33、meters). Here, Fearless Felix will unclip. He will roll back the door.Then, I would assume, he will slowly step out onto something resembling an Olympic diving platform.Below, the Earth becomes the concrete bottom of a swimming pool that he wants to land on, but not too hard. Still, hell be travelin
34、g fast, so despite the distance, it will not be like diving into the deep end of a pool. It will be like he is diving into the shallow end.Skydiver preps for the big jumpWhen he jumps, he is expected to reach the speed of sound - 690 mph (1,110 kph) - in less than 40 seconds. Like hitting the top of
35、 the water, he will begin to slow as he approaches the more dense air closer to Earth. But this will not be enough to stop him completely.If he goes too fast or spins out of control, he has a stabilization parachute that can be deployed to slow him down. His team hopes its not needed. Instead, he pl
36、ans to deploy his 270-square-foot (25-square-meter) main chute at an altitude of around 5,000 feet (1,524 meters).In order to deploy this chute successfully, he will have to slow to 172 mph (277 kph). He will have a reserve parachute that will open automatically if he loses consciousness at mach spe
37、eds.Even if everything goes as planned, it wont. Baumgartner still will free fall at a speed that would cause you and me to pass out, and no parachute is guaranteed to work higher than 25,000 feet (7,620 meters).It might not be the moon, but Kittinger free fell from 102,800 feet in 1960 - at the dawn of an infamous space race that captured the hearts of many. Baumgartner will attempt to break that record, a feat that boggles the mind. This is one of those monumental moments I will always remember, because there is no way Id miss this.