《基于Multisim的数字时钟设计.doc》由会员分享,可在线阅读,更多相关《基于Multisim的数字时钟设计.doc(20页珍藏版)》请在三一办公上搜索。
1、 目录第1章 引言3 1.设计思路32.主要内容4第2章 数字时钟模块设计42.1数字时钟秒脉冲信号的设计42.1.1秒时钟信号发生器的设计42.2 器件分析52.2.1 74LS160分析52.3 计数器设计62.3.1六十进制计数器62.3.2 二十四进制计数器62.4 计时电路设计72.4.1秒计时电路的设计72.4.2时计时电路的设计72.5 数字时钟电路设计82.6 校时电路102.7 整点报时112.8 闹钟电路12第3章 仿真调试163.1时钟显示173.1.1 时钟显示完整的00:00:00173.1.2 时钟完整显示01:00:00173.1.3 时钟完整显示23:59:59
2、183.1.4 仿真开关校准“秒”电路183.1.6 仿真开关校准“时”电路19第4章 结论.20第5章 利用Multisim10.0仿真软件设计体会20参考文献20 基于Multisim的数字时钟设计赵娟 (安庆师范学院物理与电气工程学院 安徽 安庆 246011)指导老师:朱德权 摘要:时间对于人们来说总是那么的宝贵,工作的忙碌性和繁杂性容易使人们忘记当前的时间。于是,20世纪末,,电子技术有了飞快地发展,不仅在通信技术上用数字信号替代模拟信号,数字时钟相比模拟钟能给人一种一目了然的感觉,它不仅可以同时显示时、分和秒,并且可以完成准确的校正。数字时钟具有走时精确,校准方便设计和使用简单的特
3、点。对于Multisim软件进行数字时钟的设计和仿真。首先在Multisim创建好数字时钟的总电路图。然后用该软件中的仿真功能进行仿真。一个数字时钟需要振荡器,计数器,译码器和显示器电路精确时间“小时”“分”“秒”与数字显示,并需要校正电路,使其准确的工作,也可有定时和计时功能。数字钟及扩大其应用,有着非常现实的意义。在本文中,multisim10.0的基础上设计的数字钟,由数字集成电路,数码组成。 关键词:数字钟,振荡器,计数器译码,显示,仿真Design of digital clock based on MultisimZhaoJuan(School of Physics and Ele
4、ctrical Engineering of Anqing Normal College, Anqing 246011) Abstract:The time for people to always so precious,A busy and complex nature of the work is easy to make people forget the current time。So, At the end of the twentieth Century,Electronic technology has been rapid development。Not only in co
5、mmunication technology with digital signal instead of analog signal,but also in our daily life,Digital clock compared to analog clock can give people a feeling of stick out a mile,It not only can display hours, minutes and seconds,And it can accomplish accurate correction.Digital clock is accurate,
6、convenient and simple in design with calibration.For design and simulation with Multisim software in digital clock .We first created Multisim software digital clock circuit diagram of the total.And then use the softwares simulation features in the simulation .a digitalclocktotheoscillator,a counter,
7、decoder anddisplay circuitaccuratelytimehoursminutessecondswithdigitaldisplay,andtheneedforcorrectioncircuitmakeitsaccuratework,alsocanhavefromtimetotimeandtimekeepingfunction.Digitalclockandtheexpansionofitsapplication,hasveryrealisticsignificance.Inthispaper,theMultisim10.0basedonthedesignofthedig
8、italclock,is composedofadigitalintegratedcircuit,digitaldisplay. Keywords:digitalclock,oscillators,counter,decodingdisplay , simulation 第1章 引言数字钟是一种用数字电路技术实现时、分、秒计时的装置,钟表的数字化给人们生产生活带来了极大的方便,而且大大地扩展了钟表原先的报时功能。诸如定时自动报警、按时自动打铃、时间程序自动控制、定时广播。而且与传统的机械钟相比,它具有走时准确、显示直观、无机械传动、无需人的经常调整等优点。数字钟的设计涉及到模拟电子与数字电子技
9、术,其中绝大部分是数字部分、逻辑门电路、数字逻辑表达式、计算真值表与逻辑函数间的关系、编码器、译码器显示等基本原理。现在主要用各种芯片实现其功能,更加方便和准确。Multisim10.0作为一种高效的设计与仿真平台。其强大的虚拟仪器库和软件仿真功能,为电路设计提供了先进的设计理念和方法。1.设计思路 1).由秒时钟信号发生器、计时电路和校时电路构成电路。2).秒时钟信号发生器可由555定时器构成。3).计时电路中采用两个60进制计数器分别完成秒计时和分计时;24进制计数器完成时计时;采用译码器将计数器的输出译码后送七段数码管显示。4).校时电路采用开关控制时、分、秒计数器的时钟信号为校时脉冲以
10、完成校时5)系统应具有整点报时功能,因此,应有译码电路将整点时间识别出来,同时应有报时电路。6)系统应有定时功能,因此,应有定时输入电路和时间比较电路。7)系统应具有闹钟功能。2.主要内容熟悉Multisim10.0仿真软件的应用;设计一个具有显示、校时、整点报时和定时功能的数字时钟,.能独立完成整个系统的设计;用Multisim10.0仿真实现数字时钟的功能第2章 数字时钟模块设计数字时钟电路主要由时、分、秒三部分组成,秒时钟电路主要由秒脉冲信号发生器、计数器、译码器、数码管组成,秒计数周期60s。同样分时钟电路由计数器、译码器、数码管组成,计数周期为60m,与秒时钟电路不同的是脉冲信号由秒
11、时钟电路提供。时时钟电路采用同样的设计,计数周期为24h。2.1数字时钟秒脉冲信号的设计2.1.1秒时钟信号发生器的设计振荡器可由晶振组成,也可以由555与RC组成的多谐振荡器。由555定时器得到1Hz的脉冲,功能主要是产生标准秒脉冲信号和提供功能扩展电路所需要的信号。由555定时器构成的1Hz秒时钟信号发生器。下面的电路图产生1Hz的脉冲信号作为总电路的初输入时钟脉冲。由555定时器得到1Hz的脉冲,功能主要是产生标准秒脉冲信号和提供功能扩展电路所需要的信号。利用555多谐振荡器,优点:555内部的比较器灵敏度较高,而且采用差分电路形式,它的振荡频率受电源电压和温度变化的影响很小。缺点:要精
12、确输出1Hz脉冲,对电容和电阻的数值精度要求很高,所以输出脉冲既不够准确也不够稳定.2.2 器件分析2.2.1 74LS160分析在数字钟的控制电路中,分和秒的控制都是一样的,都是由一个十进制计数器和一个六进制计数器串联而成的,在电路的设计中我采用的是统一的器件74LS160D的反馈置数法来实现十进制功能和六进制功能,根据74LS160D的结构把输出端的0110(十进制为6)用一个与非门74LS00引到CLR端便可置0,这样就实现了六进制计数。由两片十进制同步加法计数器74LS160级联产生,采用的是异步清零法。 74LS160真值表 CLR LOAD ENP ENT CLKA B C DQA
13、 QB QC QD 0XXXXX X X X0 0 0 010XXX X X XA B C D1111X X X X 计数同样,在输出端的1001(十进制为9)用一个与非门74LS00引到Load端便可置0,这样就实现了十进制计数。在分和秒的进位时,用秒计数器的Load端接分计数器的CLK控制时钟脉冲,脉冲在上升沿来时计数器开始计数。时计数器可由两个十进制计数器串接并通过反馈接成二十四制计数器。由计数器得到的4位二进制码的必须通过译码后转为人们习惯的数字显示。如12:54:30的二进制码为00010010:01010100:00110000。秒信号经秒计数器、分计数器、时计数器之后,分别得到“
14、秒”个位、十位、“分”个位、十位以及“时”个位、十位的计时输出信号,然后送至显示电路,以便实现用数字显示时、分、秒的要求。“秒”和“分”计数器应为六十进制,而“时”计数器应为二十四进制。采用10进制计数器74LS160来实现时间计数单元的计数功能。2.3 计数器设计2.3.1六十进制计数器对于74LS160计数,如图所示,分、秒计数电路由U3和U4俩部分组成。当时十位U4计数为5,U3计数为5时,两片74LS160,再加上一片74LS13,从而构成60进制计数。 六十进制计数器2.3.2 二十四进制计数器时计时电路与分、秒计时电路相比,首先就是触发信号来源于分计时电路的进位,其计时范围为0-2
15、3。故在前面的基础上只需修改及时范围即可。如图所示,时计数电路由U3和U4俩部分组成。当时个位U4计数为4,U3计数为2时,两片74LS160复零,从而构成24进制计数。二十四进制计数器2.4 计时电路设计2.4.1秒计时电路的设计秒计时电路计数周期为60s,触发信号由秒脉冲信号发生器提供,当计数值为59时,下一次触发信号输入时,向前进位并对计数值清零同时开始进入下一个计数周期。2.4.2时计时电路的设计在数字电子时钟中,时计时时钟周期都为24h,当触发信号输入时,计数器计数1,累计到23后,下一秒开始清零并向前进位,当计数值达到23时,下一个触发信号输入时,计数器清零同时开始进入下一个计数周
16、期。时计时电路电路设计原理图如下 时计时电路2.5 数字时钟电路设计数字时钟系统的组成利用上面的六十进制和二十四进制递增计数器子电路构成的数字钟系统如图所示 数字电路系统以上电路可完成计时周期为24h,可以准确计时,具有“时”(00-23)“分”(00-59)“秒”(00-59)数字显示。2.6 校时电路数字钟应具有分校正和时校正功能,因此,应截断分个位和时个位的直接计数通路,并采用正常计时信号与校正信号可以随时切换的电路接入其中。校正信号可直接取自信号发生器产生的信号;输出端则与分或时个位计时输入端相连。当开关打到一端时,正常输入信号可以顺利通过,故校时电路处于正常计时状态;当开关打到一端时
17、,信号产生校时电路处于校时状态。校时电路采用开关控制时、分、秒计数器的时钟信号为校时脉冲以完成校时。如图,当开关A,B闭合,C,D断开时,电路进行正常的计时工作;当开关A,B断开,C,D闭合时,就可以自动进行校时。当然也可以手动校准时间,这是需要不断地闭合、断开开关,每次只改变一个数。其中C是校时开关,D是较分开关,开关E用来控制秒得校准,断开时,秒显示为0。考虑到开关电路中到59秒及开始向前进位,故添加反向器,从而实现开关校时电路校时电路将开关校时加入到时钟电路中,时钟出现误差时,需校准。当数字钟接通电源或者计时出现误差时,需要校正时间。校时是数字钟应具备的基本功能。对校时电路的要求是,在小
18、时校正时不影响分和秒的正常计数;在分校正时不影响秒和小时的正常计数。校时方式有快校时和慢校时两种,快校时是,通过开关控制,使计数器对1Hz的校时脉冲计数。慢校时是用手动产生单脉冲作校时脉冲下图所示为校时电路和校分电路。其中S1是校分用的控制开关,S2为校时用的控制开关,它们的控制功能下表所示。校时脉冲采用分频器输出的1Hz脉冲,当S1或S2分别为0时可进行快校时。如果校时脉冲由单脉冲产生器提供,则可以进行慢校时。Multisim10.0仿真软件校时的具体设计方法是:用一个单刀双掷开关切换计数功能与校时功能,另一端接计数器的脉冲输入端,开关置于函数发生器这一端便可以校时,置于计数器的进位端便是计
19、时。不校正时间时开关都应打在与非门的那一端。开关校时电路2.7 整点报时电路应在整点前10 秒钟内开始整点报时,即当时间在59 分50 秒到59 分59 秒期间时,报时电路报时控制信号。当时间在59 分50 秒到59 分59 秒期间时,分十位、分个位和秒十位均保持不变,分别为5、9 和5,因此可将分计数器十位的Qc 和Qa 、个位的Qd 和Qa及秒计数器十位的Qc 和Qa 相与,从而产生报时控制信号。报时电路可选74HC30 来构成。74HC30 为8 输入与非门。整点报时的功能要求时,每当数字钟计时快到整点时发出声响。由原理可知当分钟计数到一个周期向前进位时,蜂鸣器开始工作。U20分别接秒钟
20、十位Qa、Qd;分钟个位QaQd;分钟十位QaQc。整点报时电路2.8 闹钟电路利用上边的二十四进制和六十进制的计数器作为信息的比较源之一,另外利用四片数值比较器74LS85对小时的个位和十位以及分钟的个位和十位进行比较,如果与设定的时间一样,则产生输出信号,利用7440和7404组成的电路驱动蜂鸣器的鸣叫,鸣叫的时间是一分钟,从*:*:00到*:*:59。假设:要求上午7时59分发出闹时信号,持续时间为1分钟。7分59分对应数字钟的时个位计数器的状态为(Q3Q2Q1Q0)HI=0111,分十位计数器的状态为(Q3Q2Q1Q0)M2=0101, 分个位计数器的状态为(Q3Q2Q1Q0)M1=1
21、001。若将上述计数器输出为“1”的所有输出端经过与门电路去控制音响电路,可以使音响电路正好在7点59分响,持续1分钟后(8点)停响。所以闹时控制信号z的表达式为Z=(Q2Q1Q0)HI*(Q2Q0)M2*(Q3Q0)M1*M,其中M为上午的信号输出,要求M=1。用与非门实现可将Z进行变换,即Z=其逻辑电路如图,74LS20为4输入二与非门,74LS03为集成电路开路(OC门)的2输入四与非门,因OC门的输出端可以进行“线与”,使用时在它们的输出端与电源+5V端之间应接一电阻RL=3.3。由图可知在上午7点59分时,音响电路的晶体管导通,则扬声器发出1KHz的声音。持续1分钟到8点整,晶体管因
22、输入端为0而截止,电路停闹。指定的时刻发出信号,或驱动音响电路“闹时”;或对某装置的电源进行接通或断开“控制”。不管时闹时还是控制,都要求时间准确,即信号的开始时刻与持续时间必须满足规定的要求。闹钟电路采用开关的形式控制74LS85的定时输入与时钟时间比较,当比较数值一直时产生输出信号1,蜂鸣器工作,工作时长为1分钟。如图所示,采用开关控制方便用户对闹钟时间的设定课题总电路图第3章 仿真调试基于Multisim10的数字电子钟的设计实现了基本的时钟以及对时钟的校准、定时闹钟,整点报时,各个子电路的设计如第三部分子电路设计的结构电路一样,将各个部分连接在一起的整机连调的电路图在multisim1
23、0.0平台上进行仿真。Multisim10.0是一个电路原理设计、电路功能测试的虚拟仿真软件,其元器件库提供数千种电路元器件供实验选用,同时也可以新建或扩充已有的元器件库。有超强板级的模拟/数字电路板的设计工作。它包含了电路原理图的图形输入、电路硬件描述语言输入方式,具有丰富的仿真分析能力。Multisim10.0软件进行设计仿真分析的基本步骤为:设计创建仿真电路、原理图电路图、选项的设置、使用仿真仪器、设定仿真分析方法,启动Multisim10.0仿真。仿真分析开始前可双击仪器图标打开仪器面板。准备观察被测试波形。按下程序窗口右上角的启动停止开关状态为1,仿真分析开始。若再次按下,启动停止升
24、关状态为0,仿真分析停止。电路启动后,需要调整示波器的时基和通道控制,使波形显示正常。在Multisim10.0软件中,根据数字钟的总电路图,设置函数发生器的频率为1Hz,把A开关和B开关都接到与非门的那端,再运行就可以让数字钟自行计数了。如果运行的太慢可以适当调节函数发生器的频率。如果把A开关接到函数发生器上,就是对小时进行校正,如果把B开关接到函数发生器上那就是对分进行校正。小时的计数是从01到12,不是从00到11,但在校正小时位时初始状态仍为00。振荡器的仿真可以直接运行,然后用示波器观察现象便可。直流稳压电源的仿真中可以看到用万用表测量出关键点的电压5.123V。用示波器A通道和B通
25、道分别显示整流滤波后电压UI的波形和稳压输出电压UO的波形,从示波器显示窗口可以看出:上面一条锯齿波曲线为UI波形,下面一条线为UO波形。如果以上设计的电路通过模拟仿真分析,不符合设计要求,可通过逐渐改变元器件参数,或更改元器件型号,使设计符合要求,最终确定出元器件参数。并可对更改的电路立即进行仿真分析,观察虚拟结果是否满足设计要求。3.1时钟显示3.1.1 时钟显示完整的00:00:003.1.2 时钟完整显示01:00:003.1.3 时钟完整显示23:59:593.1.4 仿真开关校准“秒”电路3.1.5 仿真开关校准“分”电路3.1.6 仿真开关校准“时”电路第4章 结论由震荡器、秒计
26、数器、分计数器、时计数器、显示数码管设计了数字时钟电路,经过仿真得出较理想的结果,说明电路图及思路是正确的,可以实现所要求的基本功能:计时、显示精确到秒、时分秒校时、整点报时和闹钟的功能。调试时有的器件在理论上可行,但在实际运行中就无法看到效果,所以得换不少器件,有时无法找出错误便更换器件重新接线以使电路正常运行。Multisim10.0软件有时会出问题,在理论上可行的电路在调试中未必能显示出来,这就需要耐心、仔细地分析和解决问题,不断地尝试才能得出正确的答案。第5章 利用Multisim10.0仿真软件设计体会通过对软件Multisim10.0的学习和使用,进一步加深了对数字电路的认识。在仿
27、真过程中遇到许多困难,但通过自己的努力和同学的帮助都一一克服了。首先,连接电路图过程中,数码管不能显示,后经图形放大后才发现是电路断路了。其次,布局的时候因元件比较多,整体布局比较困难,因子电路不如原电路直观,最后在不断努力下,终于不用子电路布好整个电路。调试时有的器件在理论上可行,但在实际运行中就无法看到效果,所以得换不少器件,有时无法找出错误便更换器件重新接线以使电路正常运行。在整个设计中,74LS160的接线比较困难,反复修改了多次,在认真学习其用法后采用归零法和置数法设计出60进制和24进制的计数器。同时,在最后仿真时,预置的频率一开始用的是1hz,结果仿真结果反应很慢,后把频率加大,
28、这才在短时间内就能看到全部结果。总之,通过这次对数字时钟的设计与仿真,为以后的电路设计打下良好的基础,一些经验和教训,将成为宝贵的学习财富。参考文献1、 Multisim的用户手册2、梁宗善,电子技术基础课程设计,华中科技大学出版社,2009.03。3、余孟尝,数字电子技术基础(简明教程),高等教育出版社,2006.01。4、刘舜奎等主编,电子技术实验教程,厦门大学出版社,2008.01。5、毛哲等主编,电路计算机设计仿真与测试,华中科技大学出版社,2003.04。6、卿太全等主编,常用数字集成电路原理与应用,人民邮电大学出版社。2006.017、Van Aalkenburg,M.E.Network Analysis Prentce-Hall,Inc,1974。8、 阎石数字电子技术基础,高等教育出版社,2008.05。