热交换器原理与设计.doc

上传人:laozhun 文档编号:4141967 上传时间:2023-04-07 格式:DOC 页数:8 大小:65.50KB
返回 下载 相关 举报
热交换器原理与设计.doc_第1页
第1页 / 共8页
热交换器原理与设计.doc_第2页
第2页 / 共8页
热交换器原理与设计.doc_第3页
第3页 / 共8页
热交换器原理与设计.doc_第4页
第4页 / 共8页
热交换器原理与设计.doc_第5页
第5页 / 共8页
点击查看更多>>
资源描述

《热交换器原理与设计.doc》由会员分享,可在线阅读,更多相关《热交换器原理与设计.doc(8页珍藏版)》请在三一办公上搜索。

1、绪论1.在工程中,将某种流体的热量以一定的传热方式传递给他种流体的设备,称为热交换器。2.热交换器的分类:1)按照材料来分:金属的,陶瓷的,塑料的,是摸的,玻璃的等等2)按照温度状况来分:温度工况稳定的热交换器,热流大小以及在指定热交换区域内的温度不随时间而变;温度工况不稳定的热交换器,传热面上的热流和温度都随时间改变。3)按照热流体与冷流体的流动方向来分:顺流式,逆流式,错流式,混流式4)按照传送热量的方法来分:间壁式,混合式,蓄热式 间壁式:热流体和冷流体间有一固体表面,一种流体恒在壁的一侧流动,而另一种流体恒在壁的他侧流动,两种流体不直接接触,热量通过壁面而进行传递。混合式:这种热交换器

2、内依靠热流体与冷流体的直接接触而进行传热。蓄热式:其中也有固体壁面,但两种流体并非同时而是轮流的和壁面接触,当热流体流过时,把热量储蓄于壁内,壁的温度逐渐升高;而当冷流体流过时,壁面放出热量,壁的温度逐渐降低,如此反复进行,以达到热交换的目的。第一章1.Mc称为热容量,它的数字代表流体的温度没改变1是所需的热量,用W表示。两种流体在热交换器内的温度变化与他们的热容量成反比;即热容量越大,流体温度变化越小。2.W对应单位温度变化产生的流动流体的能量存储速率。3.平均温差指整个热交换器各处温差的平均值。4.顺流和逆流情况下平均温差的区别:在顺流时,不论W1、W2值的大小如何,总有,因而在热流体从进

3、口到出口的方向上,两流体间的温差t总是不断降低;而对于逆流,沿着热流体进口到出口方向上,当W1W2时,t不断降低,当W1W2时,t不断升高。5.P冷流体的实际吸热量与最大可能的吸热量的比率,称为温度效率。(定义式P12) 物理意义:流体的实际温升与理论上所能达到的最大温升比,所以只能小于1。6.R冷流体的热容量与热流体的热容量之比。(定义式P12)7.从值的大小可看出某种流动方式在给定工况下接近逆流的程度。除非处于降低壁温的目的,否则最好使0.9,若0.75就认为不合理。(P22 例1.1)8.热交换器的最大可能的传热量Qmax,所谓Qmax是指一个面积为无穷大且其流体流量和进口温度与实际热交

4、换器的流量和进口温度相同的逆流型热交换器所能达到的传热量的极限值。9.实际传热量Q与最大可能传热量Qmax之比,称为传热有效度,以表示,即=Q/Qmax。 意义:以温度形式反映出热、冷流体可用热量被利用的程度。10.根据的定义,它是一个无因次参数,一般小于1。其实用性在与:若已知及t1、t2时,就可很容易地由Q=Wmin(t1-t2)确定热交换器的实际传热量。11.带翅片的管束,在管外侧流过的气体被限制在肋片之间形成各自独立的通道,在垂直于流动方向上(横向)不能自由运动,也就不可能自身进行混合,我们成在气体为非混合流。12.管子不带翅片,管外的气流可以在横向自由地、随意地运动,称为混合流。13

5、.在同样的传热单元数时,逆流热交换器的传热有效度总是大于顺流的,且随传热单元数的增加而增加。在顺流热交换器中则与此相反,气传热有效度一般随传热单元数的增加而趋于定值。14.在设计性热计算时,最好采用平均温差法;而在校核性热计算时,传热单元数法更优越。第二章1.管壳式换热器流体的流程: 一种流体走管内,称为管程,另一种流体走管外,称为壳程.管内流体从换热管一端流向另一端一次,称为一程;对U形管换热器,管内流体从换热管一端经过U形弯曲段流向另一端一次,称为两程。较常用的是单管程、两管程和四管程。2.管程数指介质在换热管内沿换热管长度方向往返的次数。一般为偶数,主要有1、2、4、6、8、10、12等

6、。3.折流板的作用:使流体横过管束流动,支承管束,防止管束振动和弯曲。常用的形式有弓形折流板和盘环形折流板。4.防冲挡板的作用:减小流体的不均匀分布和对管束的侵蚀和震动。在壳程进口接管(焊在壳体上,供壳程流体进出)处设置防冲挡板。5.四种热交换器的区别6.定性温度的取法大致有:取流体的平均温度为定性温度;取壁面温度为定性温度;取流体和壁面的平均温度为定性温度;卡路里温度7.螺旋板式热交换器的构造包括螺旋形传热板、隔板、头盖、连接管。8.可拆卸办事热交换器有三个主要部件传热板片、密封垫片、压紧装置组成。9.板翅式热交换器由隔板、翅片和封条三部分构成。10.四种管壳式热交换器的区别:1)固定管板式

7、热交换器:结构简单,重量轻,在壳程程数相同的条件下,可排的管数多。2)U形管式热交换器:清除管子内壁的污垢困难,管板的有效利用率低,损坏的管子难于调换,管束的中心部分空间对热交换器工作有着不利的影响。3)浮头式热交换器:能很好适应管子和壳体间温差大、壳程介质腐蚀性强、易结垢的情况;结构复杂,金属消耗量多。4)填料函式热交换器:填料密封处容易泄漏,故不适用于易挥发、易燃、易爆、有毒和高压流体的热交换,制造复杂,安装不便。第三章1.隔板、翅片及封条三部分构成了板翅式热交换器的结构基本单元。2.冷水塔由淋水装置、配水系统和通风筒组成。3.喷射式热交换器的主要部件有工作喷管、引入室、混合室和扩散管。4

8、.热管的工作原理:热管是一种依靠管内工质的蒸发、凝结和循环流动而传递热量的部件。5.热管传热能力的限制因素:粘性极限,声速极限,携带极限,毛细极限,沸腾极限,连续流动极限,冷冻启动极限。第六章1,增强传热的基本途径:1)扩展传热面积F;2)加大传热温差t;3)提高传热系数K2增强传热的方法:1)改变流体的流动情况2)改变流体的物性3)改变换热表面情况3.污垢热阻的成因: 1)钙镁类盐,在水中的溶解度随温度升高而降低,在壁面上形成结晶型污垢。 2)壁面上的锈、杂物、悬浮在燃烧产物中的灰和而未燃尽的颗粒等,一旦进入热交换器就会因流速下降而沉积下来;另一种带负电荷的胶体颗粒与传热面上一层溶于水中的带

9、正电的铁离子互相作用形成沉积型污垢。3)藻类、菌类本身或其剥落物附着在传热面上形成生物型污垢。换热器(亦称为热交换器或热交换设备)是用来使热量从热流体传递到冷流体,以满足规定的工艺要求的装置,是对流传热及热传导的一种工业应用。换热器可以按不同的方式分类。 按其操作过程可分为间壁式、混合式、蓄热式(或称回热式)三大类;按其表面的紧凑程度可分为紧凑式和非紧凑式两类。家用类家用热交换器解决了集体供暖家庭冬天用热水的难题。它的工作原理跟集体供热的热交换器原理相同。只是大小和样式不同而已。可分为铸铁式,筒式,钢制式,储水式,板式。效果都不错。铸铁式铸铁式的体积大,重量重。但是里面的铜管买之前可以打开看,

10、不容易被商家坑骗,而且用过几年铜管坏了还可以更换。筒式筒式的体积小,交换效率高。但用户不能查看里面铜管的长度。而且不能更换铜管。而且还不太美观。钢制式钢制式体积有大有小。用户也不能查看里面铜管的长度。而且不能更换铜管。但是比较美观。板式板式,体积很小,重量很小。热交换效率很高。里面无铜管。热交换能力跟层数有关。层数看得见,摸得着。水垢以上各种交换器在使用过程中都会产生水垢。用了几年后会出现水流小,出水不是太热等情况。但在石家庄等地也出现了专业除垢的公司。通过专业坠垢后也能跟新的一样。石家庄华北商贸城就有这样的公司。换热器换热器(英语翻译:heat exchanger),是将热流体的部分热量传递

11、给冷流体的设备,又称热交换器。换热器是化工、石油、动力、食品及其它许多工业部门的通用设备,在生产中占有重要地位。在化工生产中换热器可作为加热器、冷却器、冷凝器、蒸发器和再沸器等,应用更加广泛。换热器种类很多,但根据冷、热流体热量交换的原理和方式基本上可分三大类即:间壁式、混合式和蓄热式。在三类换热器中,间壁式换热器应用最多。间壁式换热器的类型根据作用原理可分为间壁式换热器、蓄热式换热器和混合式换热器。根据使用目的可分为冷却器、加热器、冷凝器和汽化器。交换器图片(6张)根据结构材料可分为金属材料换热器和非金属材料换热器。根据传热面的形状和结构可分为管式换热器和板式换热器。根据用途可以分为集体供热

12、式热交换器和家用热交换器。间壁式这种换热器是在容器外壁安装夹套制成,结构简单;但其加热面受容器壁面限制,传热系数也不高。为提高传热系数且使釜内液体受热均匀,可在釜内安装搅拌器。当夹套中通入冷却水或无相变的加热剂时,亦可在夹套中设置螺旋隔板或其它增加湍动的措施,以提高夹套一侧的给热系数.为补充传热面的不足,也可在釜内部安装蛇管。夹套式换热器广泛用于反应过程的加热和冷却。沉浸式蛇管换热器这种换热器是将金属管弯绕成各种与容器相适应的形状,并沉浸在容器内的液体中。蛇管换热器的优点是结构简单,能承受高压,可用耐腐蚀材料制造;其缺点是容器内液体湍动程度低,管外给热系数小。为提高传热系数,容器内可安装搅拌器

13、。喷淋式换热器这种换热器是将换热管成排地固定在钢架上,热流体在管内流动,冷却水从上方喷淋装置均匀淋下,故也称喷淋式冷却器。喷淋式换热器的管外是一层湍动程度较高的液膜,管外给热系数较沉浸式增大很多。另外,这种换热器大多放置在空气流通之处,冷却水的蒸发亦带走一部分热量,可起到降低冷却水温度,增大传热推动力的作用。因此,和沉浸式相比,喷淋式换热器的传热效果大有改善。套管式换热器套管式换热器是由直径不同的直管制成的同心套管,并由U形弯头连接而成。在这种换热器中,一种流体走管内,另一种流体走环隙,两者皆可得到较高的流速,故传热系数较大。另外,在套管换热器中,两种流体可为纯逆流,对数平均推动力较大。套管换

14、热器结构简单,能承受高压,应用亦方便(可根据需要增减管段数目)。特别是由于套管换热器同时具备传热系数大,传热推动力大及能够承受高压强的优点,在超高压生产过程(例如操作压力为3000大气压的高压聚乙烯生产过程)中所用的换热器几乎全部是套管式。板式换热器最典型的间壁式换热器,它在工业上的应用有着悠久的历史,而且至今仍在所有换热器中占据主导地位。主体结构由换热板片以及板间的胶条组成。长期在市场占据主导地位,但是其体积大,换热效率低,更换胶条价格昂贵(胶条的更换费用大约占整个过程的1/3-1/2)。主要应用于液体-液体之间的换热,行业内常称为水水换热,其换热效率在5000w/m2.K。为提高管外流体给

15、热系数,通常在壳体内安装一定数量的横向折流档板。折流档板不仅可防止流体短路,增加流体速度,还迫使流体按规定路径多次错流通过管束,使湍动程度大为增加。常用的档板有圆缺形和圆盘形两种,前者应用更为广泛。目前,由于我国新版GMP的推出,板式换热将逐渐退出食品,饮料,制药等卫生级别高的行业。管壳式换热器管壳式(又称列管式) 换热器是管壳式换热器主要有壳体、管束、管板和封头等部分组成,壳体多呈圆形,内部装有平行管束或者螺旋管,管束两端固定于管板上。在管壳换热器内进行换热的两种流体,一种在管内流动,其行程称为管程;一种在管外流动,其行程称为壳程。管束的壁面即为传热面。管子的型号不一,过程一般为直径16mm

16、 20mm或者25mm三个型号,管壁厚度一般为1mm,1.5mm,2mm以及2.5mm。进口换热器,直径最低可以到8mm,壁厚仅为0.6mm。大大提高了换热效率,今年来也在国内市场逐渐推广开来。管壳式换热器,螺旋管束设计,可以最大限度的增加湍流效果,加大换热效率。内部壳层和管层的不对称设计,最大可以达到4.6倍。这种不对称设计,决定其在汽-水换热领域的广泛应用。最大换热效率可以达到14000w/m2.k,大大提高生产效率,节约成本。同时,由于管壳式换热器多为金属结构,随着我国新版GMP的推出,不锈钢316L为主体的换热器,将成为饮料,食品,以及制药行业的必选。双管板换热器也称P型换热器,是在管

17、壳式换热器的两头各加一个管板,可以有效防止泄漏造成的污染。现在国产品牌较少,价格昂贵,一般在10万元以上,进口可以到几十万。符合新版GMP规定,虽价格昂贵,但决定其市场广阔。混合式混合式热交换器是依靠冷、热流体直接接触而进行传热的,这种传热方式避免了传热间壁及其两侧的污垢热阻,只要流体间的接触情况良好,就有较大的传热速率。故凡允许流体相互混合的场合,都可以采用混合式热交换器,例如气体的洗涤与冷却、循环水的冷却、汽-水之间的混合加热、蒸汽的冷凝等等。它的应用遍及化工和冶金企业、动力工程、空气调节工程以及其它许多生产部门中。 按照用途的不同,可将混合式热交换器分成以下几种不同的类型: (1)冷却塔

18、(或称冷水塔) 在这种设备中,用自然通风或机械通风的方法,将生产中已经提高了温度的水进行冷却降温之后循环使用,以提高系统的经济效益。例如热力发电厂或核电站的循环水、合成氨生产中的冷却水等,经过水冷却塔降温之后再循环使用,这种方法在实际工程中得到了广泛的使用。 (2)气体洗涤塔(或称洗涤塔) 在工业上用这种设备来洗涤气体有各种目的,例如用液体吸收气体混合物中的某些组分,除净气体中的灰尘,气体的增湿或干燥等。但其最广泛的用途是冷却气体,而冷却所用的液体以水居多。空调工程中广泛使用的喷淋室,可以认为是它的一种特殊形式。喷淋室不但可以像气体洗涤塔一样对空气进行冷却,而且还可对其进行加热处理。但是,它也

19、有对水质要求高、占地面积大、水泵耗能多等缺点:所以,目前在一般建筑中,喷淋室已不常使用或仅作为加湿设备使用。但是,在以调节湿度为主要目的的纺织厂、卷烟厂等仍大量使用! (3)喷射式热交换器 在这种设备中,使压力较高的流体由喷管喷出,形成很高的速度,低压流体被引入混合室与射流直接接触进行传热,并一同进入扩散管,在扩散管的出口达到同一压力和温度后送给用户。 (4)混合式冷凝器 这种设备一般是用水与蒸汽直接接触的方法使蒸汽冷凝。蓄热式蓄热式换热器用于进行蓄热式换热的设备。内装固体填充物,用以贮蓄热量。一般用耐火砖等砌成火格子(有时用金属波形带等)。换热分两个阶段进行。第一阶段,热气体通过火格子,将热

20、量传给火格子而贮蓄起来。第二阶段,冷气体通过火格子,接受火格子所储蓄的热量而被加热。这两个阶段交替进行。通常用两个蓄热器交替使用,即当热气体进入一器时,冷气体进入另一器。常用于冶金工业,如炼钢平炉的蓄热室。也用于化学工业,如煤气炉中的空气预热器或燃烧室,人造石油厂中的蓄热式裂化炉。 蓄热式换热器一般用于对介质混合要求比较低的场合。价格分析影响热交换器价格的因素有很多,下面【换热设备推广中心】为大家就热交换器价格做如下分析。首先,不锈钢热交换器的材质是影响价格波动的一方面因素。不锈钢的价格是时有波动,一般厂家给出的报价都有一个周期,周期内有效。所以钢材的价格影响热交换器的设备价格。其次,不锈钢热

21、交换器的厂家地区分布影响价格设定。为什么这样说呢?不同地区的人力成本是不一样的,一个上海的厂家和一个山东厂家相比,成本方面肯定不一样。第三,不锈钢热交换器1的企业规模决定价格。企业重视质量和服务,那么价格中加入的成本空间也会增大,如果企业不是非常重视,那么加入的成本就会很低。但是从代理或者采购的角度,一个没有售后的企业是不负责的企业。故障处理在生产过程中,由于热交换器管板受水分冲刷、气蚀和微量化学介质的腐蚀,管板焊缝处经常出现渗漏,导致水和化工材料出现混合,生产工艺温度难以控制,致使生成其它产品,严重影响产品质量,降低产品等级。冷凝器管板焊缝渗漏后,企业通常利用传统补焊的方法进行修复,管板内部

22、易产生内应力,且难以消除,致使其它换热器出现渗漏,企业通过打压,检验设备修复情况,反复补焊、实验,24人需要几天时间才能修复完成,使用几个月后管板焊缝再次出现腐蚀,给企业带来人力、物力、财力的浪费,生产成本的增加。通过福世蓝高分子复合材料的耐腐蚀性和抗冲刷性,通过提前对新换热器的保护,这样不仅有效治理了新换热器存在的焊缝和砂眼问题,更避免了使用后化学物质腐蚀换热器金属表面和焊接点,在以后的定期维修时,也可以涂抹福世蓝高分子复合材料来保护裸露的金属;即使使用后出现了渗漏现象,也可以通过福世蓝技术及时修复,避免了长时间的堆焊维修影响生产。正是由于此种精细化的管理,才使得换热器渗漏问题出现的概率大大

23、降低,不仅降低了换热器的设备采购成本,更保证了产品质量、生产时间,提高了产品竞争力。清洗工艺1 隔离设备系统,并将换热器里面的水排放干净。 2 采用高压水清洗管道内存留的淤泥、藻类等杂质后,封闭系统。 3 在隔离阀和交换器间装上球阀(不小于1英寸=2.54厘米),进水和回水口都应安装。 4 接上输送泵和连接导管,使清洗剂从换热器的底部泵入,从顶部流出。 5 开始向凝汽器里泵入所需要的福世泰克清洗剂(比例可根据具体情况调整)。 6 反复循环清洗到推荐的清洗时间。随着循环的进展和沉积物的溶解,反应时产生的气体也会增多,应随时通过放气阀将多余的空气排出。随着空气的排出,换热器内的空间会增大,可加入适

24、当的水,不要一开始就注入大量的水,可能会造成水的溢出。 7 循环中要定时检查清洗剂的有效性,可以使用PH 试纸测定。如果溶液保持在PH值23时,那么清洗剂仍然有效。如果清洗剂的PH 值达到56时,需要再添加适量福世泰克清洗剂。最终溶液的PH值在23时保持30分钟没有明显变化,证明达到了清洗效果。注意:福世泰克清洗剂可以回收后重复使用,排放会造成浪费。8 达到清洗时间后,回收清洗溶液。并用清水反复冲洗交换器,直到冲洗干净至中性,用PH试纸测定PH值67。 9 完成清洗后既可开机运行。也可以打压试验,看是否有泄漏现象。如果有泄漏,可以采用美嘉华高分子复合材料进行修复保护,并且可以大大延长设备的使用

25、寿命。 10. 设备稳定后,记下当前的介质过流量、工作压力、换热效率等数据。 11. 比较清洗前和清洗后数值的变化,就可以计算出该企业每个小时所节省的电费、煤费等生产费用及提高的工作效率,这正是企业采用福世泰克技术应用的价值补偿。 12同样的操作方法也可用于板式、框架式的热交换器清洗。 13. 如企业需要设备进行钝化预膜处理,可按以下流程进行操作:将钝化预膜剂按推荐稀释比泵入设备中(同时在循环槽内悬挂试片);按推荐时间循环、浸泡;检测预膜效果(红点法或蓝点法);排放;水冲洗干净至中性(用PH试纸测定PH值67)。 14. 钝化预膜结束后,最好采用风机等通风设备将系统吹干,可确保并提升钝化预膜效

26、果。发展历史二十世纪20年代出现板式换热器,并应用于食品工业。以板代管制成的换热器,结构紧凑,传热效果好,因此陆续发展为多种形式。30年代初,瑞典首次制成螺旋板换热器。接着英国用钎焊法制造出一种由铜及其合金材料制成的板翅式换热器,用于飞机发动机的散热。30年代末,瑞典又制造出第一台板壳式换热器,用于纸浆工厂。在此期间,为了解决强腐蚀性介质的换热问题,人们对新型材料制成的换热器开始注意。 60年代左右,由于空间技术和尖端科学的迅速发展,迫切需要各种高效能紧凑型的换热器,再加上冲压、钎焊和密封等技术的发展,换热器制造工艺得到进一步完善,从而推动了紧凑型板面式换热器的蓬勃发展和广泛应用。此外,自60

27、年代开始,为了适应高温和高压条件下的换热和节能的需要,典型的管壳式换热器也得到了进一步的发展。70年代中期,为了强化传热,在研究和发展热管的基础上又创制出热管式换热器。 换热器按传热方式的不同可分为混合式、蓄热式和间壁式三类。 混合式换热器是通过冷、热流体的直接接触、混合进行热量交换的换热器,又称接触式换热器。由于两流体混合换热后必须及时分离,这类换热器适合于气、液两流体之间的换热。例如,化工厂和发电厂所用的凉水塔中,热水由上往下喷淋,而冷空气自下而上吸入,在填充物的水膜表面或飞沫及水滴表面,热水和冷空气相互接触进行换热,热水被冷却,冷空气被加热,然后依靠两流体本身的密度差得以及时分离。蓄热式

28、换热器是利用冷、热流体交替流经蓄热室中的蓄热体(填料)表面,从而进行热量交换的换热器,如炼焦炉下方预热空气的蓄热室。这类换热器主要用于回收和利用高温废气的热量。以回收冷量为目的的同类设备称蓄冷器,多用于空气分离装置中。间壁式换热器的冷、热流体被固体间壁隔开,并通过间壁进行热量交换的换热器,因此又称表面式换热器,这类换热器应用最广。间壁式换热器根据传热面的结构不同可分为管式、板面式和其他型式。管式换热器以管子表面作为传热面,包括蛇管式换热器、套管式换热器和管壳式换热器等;板面式换热器以板面作为传热面,包括板式换热器、螺旋板换热器、板翅式换热器、板壳式换热器和伞板换热器等;其他型式换热器是为满足某

29、些特殊要求而设计的换热器,如刮面式换热器、转盘式换热器和空气冷却器等。换热器中流体的相对流向一般有顺流和逆流两种。顺流时,入口处两流体的温差最大,并沿传热表面逐渐减小,至出口处温差为最小。逆流时,沿传热表面两流体的温差分布较均匀。在冷、热流体的进出口温度一定的条件下,当两种流体都无相变时,以逆流的平均温差最大顺流最小。在完成同样传热量的条件下,采用逆流可使平均温差增大,换热器的传热面积减小;若传热面积不变,采用逆流时可使加热或冷却流体的消耗量降低。前者可节省设备费,后者可节省操作费,故在设计或生产使用中应尽量采用逆流换热。当冷、热流体两者或其中一种有物相变化(沸腾或冷凝)时,由于相变时只放出或

30、吸收汽化潜热,流体本身的温度并无变化,因此流体的进出口温度相等,这时两流体的温差就与流体的流向选择无关了。除顺流和逆流这两种流向外,还有错流和折流等流向。在传热过程中,降低间壁式换热器中的热阻,以提高传热系数是一个重要的问题。热阻主要来源于间壁两侧粘滞于传热面上的流体薄层(称为边界层),和换热器使用中在壁两侧形成的污垢层,金属壁的热阻相对较小。 增加流体的流速和扰动性,可减薄边界层,降低热阻提高给热系数。但增加流体流速会使能量消耗增加,故设计时应在减小热阻和降低能耗之间作合理的协调。为了降低污垢的热阻,可设法延缓污垢的形成,并定期清洗传热面。一般换热器都用金属材料制成,其中碳素钢和低合金钢大多用于制造中、低压换热器;不锈钢除主要用于不同的耐腐蚀条件外,奥氏体不锈钢还可作为耐高、低温的材料;铜、铝及其合金多用于制造低温换热器;镍合金则用于高温条件下;非金属材料除制作垫片零件外,有些已开始用于制作非金属材料的耐蚀换热器,如石墨换热器、氟塑料换热器和玻璃换热器等。

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 办公文档 > 其他范文


备案号:宁ICP备20000045号-2

经营许可证:宁B2-20210002

宁公网安备 64010402000987号