FPGA简易数字频率计课程设计报告.doc

上传人:laozhun 文档编号:4146471 上传时间:2023-04-07 格式:DOC 页数:19 大小:35KB
返回 下载 相关 举报
FPGA简易数字频率计课程设计报告.doc_第1页
第1页 / 共19页
FPGA简易数字频率计课程设计报告.doc_第2页
第2页 / 共19页
FPGA简易数字频率计课程设计报告.doc_第3页
第3页 / 共19页
FPGA简易数字频率计课程设计报告.doc_第4页
第4页 / 共19页
FPGA简易数字频率计课程设计报告.doc_第5页
第5页 / 共19页
点击查看更多>>
资源描述

《FPGA简易数字频率计课程设计报告.doc》由会员分享,可在线阅读,更多相关《FPGA简易数字频率计课程设计报告.doc(19页珍藏版)》请在三一办公上搜索。

1、FPGA简易数字频率计课程设计报告The Design Of Simple Digital Frequency Meter Base On FPGA ABSTRACT The design is based on FPGA digital frequency of a simple plan, use Verilog hardware design realized the frequency of internal function module, the accuracy of the measurement method, etc NIOS and FPGA, soft nuclear

2、CPU embedded systems, using the SOPC constitute NIOS soft check data management man-machine floating point calculations, exchange, with real-time display interface chip traditional FPGA + MCU solutions, system is much more flexible than small volume and low consumption, have advantages of hardware a

3、nd software systems in programmable functions. This design method of measuring frequency by measuring method is compared with direct frequency measurement method, and the measuring accuracy of ZhouFaYou characteristics. Front-end signal input by AD811 amplifier to recuperate broadband amplification,

4、 weak s ignal by comparator plastic, after using measurements on FPGA, system of good real-time, high precision.Key words: Equal precision Frequency counter FPGA NIOS Verilog 摘 要:本设计是基于FPGA的一个简易数字频率计,利用Verilog硬件描述语言设计实现了频率计内部功能模块,采用了等精度测量的方法,并结合NIOS软 核CPU嵌入FPGA,构成SOPC系统,利用NIOS软核对数据浮点运算处理,管理人机交换界面实时显

5、示,跟传统FPGA+单片机的多芯片系统方案相比 更加灵活,系统体积小和功耗小等优势,具备软硬件在系统可编程的功能。 本设计测量频率的方法采用的是等精度测量法,相比直接测频法和测周法有精度 更高的特点。前端信号输入调理采用宽带放大器AD811对微弱信号进行放大,经过比较器整形调理后,FPGA进行采用测量,系统实时性好,精度高。关键 词:等精度 频率计 FPGA NIOS Verilog 摘要 IABSTRACT II1 概 述 12 系统方案分析及比较选择 32.1 方案构想 32.2 方案比较及选用依据: 43 工作原理及其系统框图 53.1 计数式直接测频法 53.2 计数式直接测周期 63

6、.3 等精度测量原理 74 硬件系统实现 1041 硬件系统原理图 10411放大电路的选择 10412 整形电路 1342 FPGA控制电路 154.2.1 FPGA芯片选型 154.2.2 FPGA最小系统搭建 164.3 FPGA内部模块 194.3.1系统总体框图 194.3.2 同步预置模块 204.3.3 频率计数模块、时间计数模块 214.3.4 数据输出模块,计数器清零模块 211、概述 随着微电子技术和计算机技术的迅速发展,特别是单片微机和片上可编程系统的出现 和发展,使传统的电子测量仪器在原理、功能、精度及自动化水平等方面都发生了巨大的变化,形成一种完全突破传统概念的新一代

7、测量仪器。频率计广泛采用了高 速集成电路和大规模集成电路,使仪器在小型化、耗电、可靠性等方面都发生了重大的变化。传统的频率计测量误差较大,等精度频率计以其测量准确、精度高、方 便等优势将得到广泛的应用。频率计是电子计数器的一种,在电子技术领域内,频率与电压一样,也是一个基本参数。目前,随着电子技术、微电子技术、 数字技术、计算机科学的发展,电子计数器已经大量采用大规模、超大规模集成电路,尤其是与微处理器相结合,实现了程控化和智能化,频率计不断得到发展和完 善。尤其是近代以来,随着电子工业的飞速发展,EDA技术的问世,新型的频率计具有测量精度高、速度快、自动化程度高、直接数字显示、操作简便等特点

8、。在 此基础上附加参数转换电路,可以完成多参数、多功能测量,应用前景非常广阔。 传统的测频方法有直接测频法和测周法,在一定的闸门时间内计数,门控信号和被测信号不同步,计数值会产生一个脉冲的误差。等精度测频法采用门控信号和被测 信号同步,消除对被测信号计数产生的一个脉冲的误差。等精度频率测量方法消除了量化误差,可以在整个测试频段内保持高精度不变,其精度不会因被测信号频率 的高低而发生变化。采用FPGA作为控制核心的等精度频率计,可以充分利用FPGA高速数据采集技术较容易实现等精度测频。通过FPGA对同步门的控制, 使被测信号和标准信号在闸门时间内同步测量,为了提高精度,将电子计数功能转为测周期,

9、采用多周期同步测量技术,实现等精度测量。 随着电子设计技术的飞速发展,专用集成电路ASIC、用户现场可编程门阵列(FPGA)及复杂可编程逻辑器件(CPLD)的复杂度越来越高,数字通信、工业 自动化控制等领域所用的数字电路及系统的复杂程度也越来越高。设计这样复杂的电路及系统也不再是简单的个人劳动,而需要综合许多专家的经验和知识才能够完 成。硬件描述语言Verilog顺应这种潮流,迅速发展,目前已得到广泛的应用。 FPGA的结构灵活,其逻辑单元、可编程内部连线和IO单元都 可以由用户编程,可以实现任何逻辑功能,满足各种设计需求。其速度快,功耗低,通用性强,特别适用于复杂系统的设计。使用FPGA还可

10、以实现动态配置、在 线系统重构(可以在系统运行的不同时刻,按需要改变电路的功能,使系统具备多种空间相关或时间相关的任务)及硬件软化、软件硬化等功能。 在大多数 的研制过程中,人们习惯把FPGA技术跟MCU技术相结合的方式来完成设计。FPGA有速度快,灵活等特点,速度快的优势来源于FPGA的硬逻辑方式。由 于FPGA的逻辑功能全部用硬件电路实现,故所有的延迟只来源于门电路,而一般门电路的延迟都在ns级别。但与MCU相比,FPGA实现的功能较为简单。 你无法想象用硬件电路可以实现一个windows操作系统。所以人更习惯把FPGA在绝大多数系统中充当配角,比如,为系统的主控MCU扩展某种接口等 等。

11、现在,FPGA有向MCU发展的趋势。当然,最终FPGA不会变成MCU,最终FPGA会发扬其优点,成为比MCU更为强大的东西。目前有些FPGA 已带有模拟IO,很多FPGA可嵌入8051,ARM等软核,尽管现在由于成本等因素,这类应用并不多,但是这个发展路线不会错。一些厂商已经考虑把软核 变成硬核,也就是在FPGA中嵌入MCU,一旦类似的产品出现,实现systerm on one chip便变得非常容易。本设计采用的就是目前相对成熟的NIOS软核嵌入到FPGA中实现SPOC。 2 系统方案分析及比较选择2.1 方案构想方 案一:系统测频部分采用中小规模数字集成电路,用机械式功能转换开关换档,完成

12、测频率功能。该方案的特点是中小规模集成数字电路应用技术成熟,能可靠的完 成频率计的基本功能,但由于系统功能要求较高,所以电路过于复杂。而且多量程换档开关使用不便。此方案对输入信号作分频整形处理后,再与1秒脉宽带信号共 同输入与非门,其输出作为计数脉冲,由计数器计数,然后锁存、译码输出到数码管显示。方 案二:采用MCS-51系列单片机,将欲测量的输入信号(1Hz10MHz)进行限幅、放大、整形和分频处理,利用单片机进行频率、周期的测量和计算处 理,运算结果并行输出到数码显示。如图22所示,显然此种方案由于采用单片机技术,利用定时器计时一段时间,在通过计数器在这段时间内计数,实现用计数 法测量频率

13、。 方案三:采用FPGA+ nios软核cpu组合,外围信号输入电路经放大整形调理,fpga采集模块负责输入信号的采集,nios负责对采集信号的运算及人机界面的控制,为了进一步提高测量频率的精度和实时性,采用等精度测量频率,用FPGA可以容易实现等精度频率的测量。 方案比较及选用依据: 显然方案二要比方案一简洁、新颖,但从系统设计的指标要求上看,要实现频率的测量范围1Hz10MHz,但由于使用的是计数法测量频率,在频率较低时会产 生较大的误差,方案三利用FPGA高速的信号采集处理能力,采用等精度测量频率,在整个频率范围测量内都能达到相同的精度,不随频率变化而变化测,因此选 用方案三作为具体实施

14、的方案。 3、工作原理及其系统框图常见的测量原理有三种计数式直接测频法、计数式直接测周法、等精度测量法。3.1 计数式直接测频法 直接测频法原理图其中主门具有与门的逻辑功能,主门的一个输入端送人的是频率为fx的窄脉冲。它是由被测信号经放大整形后得到的,主门的另一个输入端送入 的是来自门控闸门信号时间Ts。因为门控是受时基控制,所以Ts既准确有稳定。设计时通过晶振和分频器的配合,可以获得0.1s、1s、10s等闸门时 间,由于主门的与功能,其输出端只有在闸门信号Ts有效期间才有频率fx的窄脉冲输出,并送到计数器去计数,计数值为N=Ts/Tx=Ts*fx,它与被 测信号的频率fx成正比,由此可得

15、fx=N/Ts (3.1) 由上式可知,当闸门时间Ts为1s时,N值即为被测信号的频率。计数式直接测频方法由于主门的开启时间与被测信号之间不同步,而使计数器值N带有1量化误 差,且当被测信号频率越低时,该量化误差的影响越大,若再考虑由晶体振荡器引起的闸门时间误差,则对式(3.1)进行误差的累积与合成运算后,可得到计数式直接测频误差的计算公式。 上式右边第一项为量化误差的相对值,其中Nx=1,第二项为闸门时间的相对误差,数值上等于晶体振荡器基准频率的相对不确定度fc/fc。 分析表明,在fx一定时,闸门时间Ts选得越长,测量准确度越高,而当Ts选定 后,fx越高,由于1误差对测试结果的影响减小,

16、测量准确度越高。但是随着1误差影响的减小,闸门时间自身的准确度对测量结果的影响不可忽略,这时可 认为fc/fc是计数式直接测频率准确度的极限。3.2 计数式直接测周期周期测量 与计数式直接测频原理方框图相比,其中门控改由输入信号放大、整形和分频后的脉冲控制,所以闸门时间的宽度就等于K倍被测信号的周期KTx,而主门的另一个 输入端有晶体振荡器和分频器产生周期为T0的时标脉冲信号。由于主门的与功能,它只在kTx期间有时标脉冲信号输出,并由计数器计数,其值为N。不难看 出,被测信号的周期为: Tx=NT0/K (3.3) 与计数式测频类似,由于Tx和T0之间也不是同步的,所以计数值N也带有1量化误差

17、;此外,由于晶振的不确定度,时标的周期T0也存在误差;最后,由于被 测输入信号中噪声的影响,使经放大整形后的脉冲周期Tx中还引入一种触发误差。对式(3.3)进行误差累积和合成的运算,可以得到测周期误差的计算公式,上式右边第一项为量化误差的相对值,其中计数误差Nx=1;第一项为时标的相对误差;第三项为触发误 差 ,其中R为被测信号Vx与噪声Vn比,可有公式R=20lg(Vx/Vn)计算(单位dB)。要降低触发误差,就必须增大信噪比R,并采用多周期测量,还 可以在整型电路中采用具有滞回特性的施密特电路来减小噪声的影响。 分析表明,在倍率K和时标T0固定是,与测频率相反,测量周期的误差随被测信号的频

18、率升高而增大;此外,由于有限的信噪比,是触发误差成为影响测量周期准确度的主要因素,采用多周期测量可以有效的降低触发误差的影响。3.3 等精度测量原理 与直接测量法相比,等精度测量法的优点是,可在整个测频范围内获得同样高的测试精度和分辨率。fx为输入信号频率,fc为时钟脉冲的频率。A、B两个计数器(分别为时间计数器和时间计数器)在同一闸门时间T内分别对fx和fc进行计数。计数器A的 计数值Na=fxT,计数器B的计数值为Nb=fcT。由于Na/fx=Nb/fc=T,则被测频率fx和周期Tx分别为 T=Nb/fc,为时钟的周期。 同步电路(D触发器)的作用在于使计数闸门信号与被测信号同步,实现同步

19、开门,并且开门时间T准确地等于被测信号周期的整数倍,故式 (3.5)、式(3.6)中的计数值Na没有1量化误差,计数值Nb虽然有1量化误差,但由于fc很高,Nb1,所以Nb的1量化误差的相对值为 (1/Nb)很小,且该误差与被测频率fx无关,因此在整个测频范围内,倒数计数器能够实现等精度的测量。该测试方法需要的除法运算功能,由于有加入 NIOS微处理器所以不难实现。 图3-3(a)中的预置闸门脉冲相当于普 通计数器的闸门时间脉冲,通常有10s,1s,0.1s等值,在倒数计数器中该阀门被同步化闸门T取代,从而使A计数器消除了1量化误差,这正是它能够 获得很高的等精度测量效果的关键所在,但同步化闸

20、门T也是未知量,所以需要增加另一个计数器B来测量T的宽度,通过其计数值Nb来计算出T的宽度,再根据 频率的定义,由公式fx=Na/T就能计算出被测信号的频率。其中Na为计数器A的计数值,若将T=Nb/fc代入次式,就可得到与式 (3.5)、(3.6)一样的结果。 考虑计数值Nb中的1量化误差、时钟fc的不确定度和同步门T的触发误差时,根据式(3.5)、(3.6)可推导出测量误差计算公式如下 R=20lg(Ux/Un),为输入被测信号的信噪比,k为多周期倍率。与式(3.2)式(3.4)相比较,式(3.7)中没有对被测信号计 数引起的1量化误差,只有Nb计数器在同步门T期间的1计数误差Tc,而且与

21、被测信号的频率无关,即在整个测量段上是等精度的。假定输入通道放大器的 制作工艺较高,它所产生的噪声可以忽略,这时触发误差仅由被测信号本身质量来决定,在评价测量方法时只应考虑内因,而不考虑外因,也即不考虑式(3.7) 中第三项。以典型数据为例,频率基准的不确定度 c/fc通常为10-710-9,假设时钟频率为10Mhz,则TC等于0.1us,若闸门选为1s,则Nb的1计数误差Tc/T仅为10-7.由此 可见,这时等精度测量的精度在整个频段上均可达10-7量级。4 、硬件系统实现41 硬件系统原理图 当被测信号进入频率计系统,需先经过宽带放大器,在经过比较器输出TTL电平。输入通道对200mV5V

22、、频率从1Hz到10MHz的信号进行放大和整形,成为TTL电平的标准数字信号。411放大电路的选择 本系统在设计放大电路比较多种方案来实现,通过不断改进来达到系统要求的性能。对放大电路的要求是把0.5V3V的信号转换为TTL电平,频带宽度为 1hz10Mhz,所以放大电路应具有较大的输入阻抗、较小的输入电流、较强的抗干扰能力,并有很宽的通频带(1Hz10MHz)和输出幅值达到 TTL电平幅值。有以下几种方案。(1)高频三极管 三极管是一种控制元件,主要用来控制电流的大小,以共发射极接法为例(信号从基 极输入,从集电极输出,发射极接地),当基极电压UB有一个微小的变化时,基极电流IB也会随之有一

23、小的变化,受基极电流IB的控制,集电极电流IC会有 一个很大的变化,基极电流IB越大,集电极电流IC也越大,反之,基极电流越小,集电极电流也越小,即基极电流控制集电极电流的变化。但是集电极电流的变 化比基极电流的变化大得多,这就是三极管的放大作用。IC 的变化量与IB变化量之比叫做三极管的放大倍数(=IC/IB, 表示变化量。)。采用单级高频三极管: 三极管工作在放大信号时,首先要进入导通状态,即要先建立合适的静态工作点,否则放大信号会出现失真。 在三极管的集电极与电源之间接一个电阻,可将电流放大转换成电压放大:当基极电压UB升高时,IB变大,IC也变大,IC 在集电极电阻RC的压降也越大,所

24、以三极管集电极电压UC会降低,且UB越高,UC就越低,UC=UB。 单级三极管放大电路 该电路参数达到在100Hz到1.5MHz频段中电压增益20DB。而更高频段三极管放大倍数锐减,显然一级的三极管放大电路增益带宽积满足不了要求。采用多级晶体三极管 :使 用射极输出器作为输入级,以提高输入阻抗。中、后级作为放大级,级与级之间电容耦合,前后级静态工作点相互独立,互不影响。使用截止频率为1000MHz 的三极管9018做放大级,由于放大器本身特性受到结电容影响,在高频时放大倍数下降,为补偿高频段放大倍数的下降,采用了RC高频补偿电路。实验情况如下图43所示。在图中,由于低频不能通过 103,而通过

25、220uF,信号被衰减,而在数百千赫兹以上的高频带,由于电容电抗减小,所以信号不衰减。这就达到了降低低频增益、使频率特性均匀的目的。 本电路经过多次调试,参数仍不能达到题目的要求,且外围电路比较复杂,各偏置电阻受各三极管质量参次不齐需逐个调试,因而分立元件不予考虑,下面使用集成电路进行实验。(2)采用集成运算放大器运 算放大器是集成器件,集成电路中大量使用有源器件组成的有源负载,以获得大电阻,提高放大电路的放大倍数;将其组成电流源,以获得稳定的偏置电流。所以一 般集成运放的放大倍数与分立元件的放大倍数相比大得多。而且其相对精度好,故对称性能好,特别适宜制作对称性要求高的电路。AD811是一款宽

26、带放大器,在增益为10的情况下,频带宽带可达到10M以上,可以轻松满足系统的要求。 施密特整形电路具有回滞比较特性,利用多级反相器对放大后的波形进行施密特整形,使输出变为脉冲波形。由于CMOS门电路有一个固定的阀值电平,对于信号脉冲中低于阀值电平的部分,门电路的输入端不予响应。利用门电路的这一特点,常将其直接用于对脉冲的整形。在实际电子电路中,集成门电路是其中应用最多的电路之一。 它的用途除了作控制门之外,还用来组成时钟脉冲发生器。由于一块集成门电路中往往包含几个独立的门电路,在组成一些电路的主要结构之后总有一些多余的部分。 可以利用这些多余的部分来作脉冲的整形、反相以及放大等用途。对于某些要

27、求较高的电路,直接用门电路整形,有时还不能满足要求,而是将门电路组成一个施密 特触发器,利用施密特触发器的滞后特性,使脉冲的整形符合电路的要求。74HC04串联 本系统使用74HC04六反相器,采用串联三个配合前置放大电路输出的反相位,使整形信号保持不失真状态。而由于采用了HC型号,输出转换时间tTHL / tTLH仅为7ns,能够满足系统要求。(2)采用比较器集成电压比较器比集成运放的开环增益低,失调电压大,共模抑制比小;但其响应速度快,传输延迟时间短,而且可将模拟信号转换成二值信号,即只有高电平和低电平两种状态的离散信号,不需外加限幅电路就可直接驱动TTL、CMOS等集成数字电路。所以采用

28、比较器可以简单地地完成设计。采用高速比较器MAX901可以处理高达10MHz的输入信号。MAX901有低输入失调电压和电压范围灵活等特点, 响应时间最大仅7ns,输出电平可与TTL电平相配合,且在后置电路中不需整形电路,大大简化了电路设计。综合考虑使用比较器作为整形电路。42 FPGA控制电路4.2.1 FPGA芯片选型 FPGA系统是整个硬件系统的核心,它既是协调整机工作的控制器,又是数据处理器,本设计使用Altera公司生产的Cyclone II系列的EP2C5Q208作为控制核心。 在Altera大获成功的第一代Cyclone 器件系列基础之上,Cyclone II FPGA从根本上针对

29、低成本进行设计,为成本敏感的大批量应用提供用户定制特性。Cyclone II FPGA以低于ASIC的成本实现了高性能和低功耗。 Cyclone II FPGA由使用方便的免费Quartus II 网络版设计软件、多种知识产权(IP)和硬件开发套件提供支持,可以迅速实现低成本FPGA方案开发。 Cyclone II 器件提供针对低成本应用的用户定制FPGA特性,其密度分布范围广,含有丰富的存储器和嵌入式乘法器,并提供多种封装选择。Cyclone II 器件还支持低成本应用中常见的各种外部存储器接口和I/O协议。 Cyclone II 接口和协议应用。Altera Cyclone II采用全铜层

30、、低K值、1.2伏SRAM工艺设计,裸片尺寸被尽可能最小的优化。采用300毫米晶圆,以TSMC成功的90nm工艺技术为基 础,Cyclone II器件提供了4,608到68,416个逻辑单元(LE),并具有一整套最佳的功能,包括嵌入式18比特x18比特乘法器、专用外部存储器接口电路、 4kbit嵌入式存储器块、锁相环(PLL)和高速差分I/O能力。 本设计所选FPGA型号EP2C5,Cyclone II FPGA简介器件 EP2C5 EP2C8 EP2C20 EP2C35 EP2C50 EP2C70逻辑单元 4,608 8,256 18,752 33,216 50,528 68,416M4K

31、RAM块(4 k比特 + 512 校验比特) 26 36 52 105 129 250总比特数 119,808 165,888 239,616 483,840 594,432 1,152,000嵌入式18x18乘法器 13 18 26 35 86 150PLLs 2 2 4 4 4 4最多用户I/O 管脚 142 182 315 475 450 622差分通道 58 77 132 205 193 2624.2.2 FPGA最小系统搭建(1) 电源模块 3.3V电源直接由5V输入电源经LM1085稳压芯片并经滤波得到,用于给FPGA所以IO口、外围存储电路、串行配置器件、复位电路等供电,1.2V

32、 电源由LM1117-1.2稳压并经滤波得到,给FPGA内核已经FPGA里面集成的PLL供电。本文来自六.维论文;网(2)存储电路aSDRAM存储器 SDRAM通常用于需要大量存储并且有成本要求的系统,SDRAM比较便宜,但需要实现刷新操作、行列管理、不同延时和命令序列等逻辑。Nios II SDRAM控制器完成了SDRAM的所有逻辑,可实现Avalon总线接口、透明的SDRAM初始化处理,刷新和其他SDRAM需要的操作,SDRAM与 FPGA相连,SDRAM控制器(IP核)允许Nios II 处理器将SDRAM器件作为大容量线性可寻址存储器使用,因此用户只需要通过简单的操作就可以像使用SRA

33、M一样使用SDARM。本设计使用的是32M的 K4S561632H。 SDRAM模块b串行配置存储器EPCS Cyclone系列FPGA基于SRAM查找表,在器件上电时配置数据必须重新加载,因此必须使用掉电保持的器件来保存配置数据,然后在FPGA上电时将配置数据加载到FPGA中。 Altera串行配置器件是具有串行接口的Flash器件,可存储Cyclone、Cyclone II以及Stratix II系列器件的配置数据,并在上电或者重新配置时将配置数据装入FPGA器件。本设计选用的是EPCS4,拥有4M的存储空间足以满足中小型设计的要 EPCS、配置电路。(3)配置电路 a主动配置(ASP)在

34、脱机运行情况下,采 用串行配置器件EPCS进行主动配置AS,主动串行配置模式(AS)是将配置数据存储在串行配置器件EPCS中,在每次系统上电时FPGA会自动使用 EPCS中的配置数据进行配置,在脱机运行之前,要实现将配置数据通过编程器写入EPCS中,ASP电路图如图bJATG配置调试时,使用运行在计算机上的quartus ii软件,用过JATG电缆连接到JATG接口直接下载数据到FPGA,用户随时可以进行JATG模式的配置,但要注意JTAG模式是直接对FPGA中SRAM单元编程掉电后丢失,因此重新上电要重新下载。电路图如图 (4)其他电路a显示电路人机界面采用的是12864LCD液晶,人机界面

35、亲和力好b晶振电路 FPGA系统内部设计由同步预置阀门、频率计数器、时间计数器、PLL、NIOS软核组成。4.3.2 同步预置模块本设计取样为自触发,周期为1s,即每个1s从信号输入端口读取脉冲,阀门时间也是1s,Verilog程序如下:always(posedge clk or negedge reset)begin if(!reset) cnt=0; else if(cnt=26d100) /为仿真方便假设计数100为1s,实际程序为50000000; begin cnt=0; clk_1hz=clk_1hz; end else cnt=cnt+1b1;endalways(posedge

36、f_in or negedge reset) / posedge f_in 同步化闸门脉冲begin if(!reset) u=0; else if(clk_1hz) u=1; /u=1时启动预设闸门 else本文来自六.维论文;网 u=0;end 4.3.3 频率计数模块、时间计数模块always(posedge f_in or negedge reset) /同步f_in上升沿begin if(!reset) begin fcounter=0; end else if(u) fcounter=fcounter+1b1; /当u=1允许计数,且f_in上升沿触发 else if(clear) fcounter=0; endalways(posedge clk or negedge reset )

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 办公文档 > 其他范文


备案号:宁ICP备20000045号-2

经营许可证:宁B2-20210002

宁公网安备 64010402000987号