基于单片机的超声波测距仪设计与制作.doc

上传人:文库蛋蛋多 文档编号:4148787 上传时间:2023-04-07 格式:DOC 页数:40 大小:1.05MB
返回 下载 相关 举报
基于单片机的超声波测距仪设计与制作.doc_第1页
第1页 / 共40页
基于单片机的超声波测距仪设计与制作.doc_第2页
第2页 / 共40页
基于单片机的超声波测距仪设计与制作.doc_第3页
第3页 / 共40页
基于单片机的超声波测距仪设计与制作.doc_第4页
第4页 / 共40页
基于单片机的超声波测距仪设计与制作.doc_第5页
第5页 / 共40页
点击查看更多>>
资源描述

《基于单片机的超声波测距仪设计与制作.doc》由会员分享,可在线阅读,更多相关《基于单片机的超声波测距仪设计与制作.doc(40页珍藏版)》请在三一办公上搜索。

1、 毕 业 设 计 论 文题 目: 基于单片机的超声波测距仪设计与制作 学 院: 电气与信息工程学院 专 业: 电子信息工程 姓 名: 学 号: 指导老师: 郭蓓蕾 完成时间: 2013年5月31日 摘 要随着社会的发展,人们对距离或长度测量的要求越来越高。在社会生活中应用超声波测距技术已很广泛,如汽车倒车雷达、测距仪和物位测量仪等都可以通过超声波来实现。由于超声波指向性强,能量消耗缓慢,在介质中传播的距离较远,因而超声波测距技术的研究和开发具有实际意义。本文介绍了一种利用超声波测距的系统,该系统是一种基于AT89C52单片机的超声波测距系统,它根据超声波在空气中传播的反射原理,以超声波传感器为

2、检测部件,应用单片机技术和超声波在空气中的时间差来测量距离。该系统主要由主控制器模块、超声波发射模块、超声波接收模块和显示模块等四个模块构成。通过单片机的I/O口控制超声波发射电路发出40KHz的超声波,反射波经由超声波检测接收电路、放大电路送入单片机外部中断端,通过计算超声波的发射和返回的时间,确定超声波发生器和反射物体之间的距离,完成测距。整个硬件电路由超声波发射电路、超声波接收电路、电源电路、显示电路等模块组成。各探头的信号经单片机综合分析处理,实现超声波测距仪的各种功能。在此基础上设计了系统的总体方案,最后通过硬件和软件实现了各个功能模块。相关部分附有硬件电路图、程序流程图,给出了系统

3、构成、电路原理及程序设计。此系统具有易控制、工作可靠、测距准确度高、可读性强和流程清晰等优点。实现后的作品可用于需要测量距离参数的各种应用场合。关键词:AT89C52,超声波,LED数码管,测距AbstractWith the development of society, the demand on the measurement of distance or length is increasing. It is applied widely by ultrasonic to measure distance, such as cars reversing radar, range fin

4、der and level measurement and so on. Because of the strong point of ultrasonic, low energy consumption, long distance transporting in media, thus it is practical and significant to measure distance by ultrasonic. In this paper, it introduces a system to measure distance by ultrasonic, which is based

5、 on the AT89C52.The theory is based on the principles of reflection of ultrasonic spreading in the air. The system uses ultrasonic sensors as a detector, and applies MCU and the time difference of ultrasonic spreading in the air to measure the distance. The system consists of the main controller mod

6、ule, ultrasonic transmitter module, ultrasonic receiver module and display module. The MCU I / O port controls ultrasonic transmitter to send 40 KHz ultrasonic, and the reflecting signal is received by the ultrasonic receiver circuit, and it is amplified, and finally, it starts the interrupter of th

7、e MCU.The MCU calculates the time of launch and return of ultrasonic to get the distance between the ultrasonic generator and the reflective objects.The entire hardware circuit is composed by ultrasonic transmitter circuit, ultrasonic receiver circuit, the power circuit, display circuit, and other m

8、odules. The probe signals are integrated analysised by SCMC to achieve the various functions of ultrasonic distance measurement instrument. Based on this has designed systems overall concept, final adoption of hardware and software to achieve the various functional modules. The relevant parts have t

9、he hardware schematics and process flow chart. It has given the system constitution, the circuitry and the programming. The instrument system has features: ease of control, stability of operation, highness of precision and distinctness of programmed process, etc. After the realization of the works c

10、an be used for needs of the various parameters measured distance applications.Keywords: AT89C52, Ultrasonic wave, LED digital tube, Measure distance目 录第1章 绪论11.1 课题研究的背景11.2 课题研究的意义11.3 论文框架2第2章 基于单片机的超声波测距原理32.1 超声波简介32.2 超声波测距原理3第3章 课题设计方案制定53.1 设计思路53.2 系统总体结构设计6第4章 硬件电路的主要元器件介绍74.1 单片机AT89C5274.

11、2 超声波传感器9第5章 超声波测距硬件电路设计105.1 超声波发射电路105.2 超声波接收电路115.3 四位LED数码管显示电路125.4 USB供电电源电路125.5 单片机复位电路13第6章 软件控制程序的设计与概述146.1 主程序流程146.2 子程序设计166.2.1 超声波发送子程序及超声波接收中断子程序166.2.2 距离计算子程序176.2.3 显示子程序17第7章 软件调试及系统仿真187.1 软件编译调试环境Keil187.2 Keil工程文件的建立、设置与目标文件的获得187.2.1 Keil工程的建立187.2.2 工程的详细设置207.2.3 编译、连接237

12、.3 系统仿真环境DXP2004237.4 系统仿真247.4.1 DXP2004工作界面247.4.2 DXP2004原理图的绘制247.4.3 仿真257.5 误差及特性分析26结 论27参考文献27致 谢30附录A 整体电路图31附录B 程序清单32第1章 绪论1.1 课题研究的背景人们生活水平的提高,城市发展建设加快,城市给排水系统也有较大发展,其状况不断改善。但是,由于历史原因和城市居住的许多不可预见因素,城市给排水系统,特别是排水系统往往落后于城市建设。因此,经常出现开挖已经建设好的建筑设施来改造排水系统的现象。城市污水给人们带来了困扰,因此箱涵的排污疏通对大城市给排水系统污水处理

13、,人们生活舒适显得非常重要。而设计研制箱涵排水疏通移动机器人的自动控制系统,保证机器人在箱涵中自由排污疏通,是箱涵排污疏通机器人的设计研制的核心部分。控制系统核心部分就是超声波测距仪的研制。随着科学技术的快速发展,超声波将在传感器中的应用越来越广。但就目前技术水平来说,人们可以具体利用的传感技术还十分有限,因此,这是一个正在蓬勃发展而又有无限前景的技术及产业领域。展望未来,超声波传感器作为一种新型的非常重要有用的工具在各方面都将有很大的发展空间,它将朝着更加高定位高精度的方向发展,以满足日益发展的社会需求,如声纳的发展趋势基本为:研制具有更高定位精度的被动测距声纳,以满足水中武器实施全隐蔽攻击

14、的需要;继续发展采用低频线谱检测的潜艇拖曳线列阵声纳,实现超远程的被动探测和识别;研制更适合于浅海工作的潜艇声纳,特别是解决浅海水中目标识别问题。毋庸置疑,未来的超声波传感器将与自动化智能化接轨,与其他的传感器集成和融合,形成多传感器。随着传感器的技术进步,传感器将从具有单纯判断功能发展到具有学习功能,最终发展到具有创造力。1.2 课题研究的意义在现实生活中,一些传统的距离测量方式在某些特殊场合存在不可克服的缺陷,例如,液面测量就是一个距离测量,传统的电极法是采用差位分布电极,通过给电或脉冲检测液面,电极长期浸泡在水中或其它液体中,极易被腐蚀、电解,从而失去灵敏性。而利用超声波测量距离可以很好

15、地解决这一问题。目前市面上常见的超声波测距系统不仅价格昂贵,体积过大而且精度也不高等种种因素,使得在一些中小规模的应用领域中难以得到广泛的应用。为解决这一系列难题,本文设计了一款基于AT89C52单片机的低成本、高精度、微型化的超声波测距仪。1.3 论文框架论文首先对课题的背景和意义进行阐述,并概述了论文结构。第2章先就超声波测距的原理进行了详细介绍。第3章针对本文采用的设计方案进行了可行性的论证,并得出了系统结构框图。第4章介绍了设计中需要用到的主要器件,且因其在本设计的作用不同而详尽程序亦不同。第5章从整体硬件设计出发,对各部分电路进行了详细说明。第6章先给出了软件设计的整体流程图,并且对

16、关键部分软件设计做了进一步的解释。程序编译及系统仿真也是本文的一个要点,所以特别分出一章来详细介绍了程序编译的环境和编译的步骤以及仿真的环境和部分仿真的效果图。第2章 基于单片机的超声波测距原理2.1 超声波简介我们知道,当物体振动时会发出声音。科学家们将每秒钟振动的次数称为声音的频率,它的单位是赫兹。我们人类耳朵能听到的声波频率为2020000赫兹。当声波的振动频率大于20000赫兹或小于20赫兹时,我们便听不见了。因此,我们把频率高于20000赫兹的声波称为“超声波”。通常用于医学诊断的超声波频率为15兆赫。超声波具有方向性好,穿透能力强,易于获得较集中的声能,在水中传播距离远等特点。可用

17、于测距,测速,清洗,焊接,碎石等。在医学,军事,工业,农业上有明显的作用。理论研究表明,在振幅相同的条件下,一个物体振动的能量与振动频率成正比,超声波在介质中传播时,介质质点振动的频率很高,因而能量很大。在我国北方干燥的冬季,如果把超声波通入水罐中,剧烈的振动会使罐中的水破碎成许多小雾滴,再用小风扇把雾滴吹入室内,就可以增加室内空气湿度。这就是超声波加湿器的原理。对于咽喉炎、气管炎等疾病,药品很难血流到患病的部位。利用加湿器的原理,把药液雾化,让病人吸入,能够疗效。利用超声波巨大的能量还可以使人体内的结石做剧烈的受迫振动而破碎。2.2 超声波测距原理超声波是利用反射的原理测量距离的,被测距离一

18、端为超声波传感器,另一端必须有能反射超声波的物体。测量距离时,将超声波传感器对准反射物发射超声波,并开始计时,超声波在空气中传播到达障碍物后被反射回来,传感器接收到反射脉冲后立即停止计时,然后根据超声波的传播速度和计时时间就能计算出两端的距离。测量距离D为 (2.1)式中 c超声波的传播速度; 超声波发射到接收所需时间的一半,也就是单程传播时间。由上式可风,距离的测量精度主要取决于计时精度和传播速度两方面。计时精度由单片机定时器决定,定时时间为机器周期与计数次数的乘积,可选用12MHz的晶振,使机器周期为精确的1s,不会产生累积误差,使定时间达到1s。超声波的传播速度c并不是固定不变的,传播速

19、度受空气密度、温度和气体分子成分的影响,关系式为 (2.2)式中 气体定压热容与定容热容的比值,空气为1.40。 R气体普适常数,为8.314kg/mol。T气体势力学温度,与摄氏温度的关系是T=273K+t。M气体相对分子质量,空气为28.810-3kg/mol。c00时的声波速度,为331.4m/s。由上式可见,超声波在空气中传播时,受温度影响最大,由表达式可计算出波速与温度的关系。温度越高,传播速度越快,而且不同温度下传播速度差别非常大,例如0时的速度为332m/s,30时的速度为350m/s,相差18m/s。因此,需要较高的测量精度时,进行温度补偿是最有效的措施。对测量精度要求不高时,

20、可认为超声波在空气中的传播速度为340m/s。第3章 课题设计方案制定3.1 设计思路 测量距离方法有很多种,短距离可以用尺,远距离有激光测距等,超声波测距适用于高精度中长距离测量。因为超声波在标准空气中传播速度为331.45米/秒,由单片机负责计时,单片机使用12.0M晶振,所以此系统测量精度理论上可以达到毫米级。 目前比较普遍的测距的原理:通过发射具有特征频率的超声波对被摄目标的探测,通过发射出特征频率的超声波和反射回接收到特征频率的超声波所用的时间,换算出距离,如超声波液位物位传感器,超声波探头,适合需要非接触测量场合,超声波测厚,超声波汽车测距告警装置等。 由于超声波指向性强,能量消耗

21、缓慢,在介质中传播距离远,因而超声波可以用于距离测量。利用超声波检测距离,设计比较方便,计算处理也较简单,并且在测量精度方面也能达到要求。由于超声波易于定向发射、方向性好、强度易控制、与被测量物体不需要直接接触的优点,是作为液体高度测量的理想手段。在精密的液位测量中需要达到毫米级的测量精度,但是目前国内的超声波测距专用集成电路都是只有厘米级的测量精度。通过分析超声波测距误差产生的原因,提高测量时间差到微秒级,以及用温度传感器进行声波传播速度的补偿后,我们设计的高精度超声波测距仪能达到毫米级的测量精度。目前超声波测距已得到广泛应用,国内一般使用专用集成电路根据超声波测距原理设计各种测距仪器,但是

22、专用集成电路的成本较高、功能单一。而以单片机为核心的测距仪器可以实现预置、多端口检测、显示、报警等多种功能,并且成本低、精度高、操作简单、工作稳定、可靠。以8051为内核的单片机系列,其硬件结构具有功能部件齐全、功能强等特点。尤其值得一提的是,出8位CPU外,还具备一个很强的位处理器,它实际上是一个完整的位微计算机,即包含完整的位CPU,位RAM、ROM(EPROM),位寻址寄存器、I/O口和指令集。所以,8051是双CPU的单片机。位处理在开关决策、逻辑电路仿真、过程测控等方面极为有效;而8位处理则在数据采集和处理等方面具有明显长处。根据设计要求并综合各方面因素,可以采用AT89C52单片机

23、作为主控制器,它控制发射触发脉冲的开始时间及脉宽,响应回波时刻并测量、计数发射至往返的时间差。利用软件产生超声波信号,通过输出引脚输入至驱动器,经驱动器驱动后推动探头产生超声波;超声波信号的接收采用锁相环LM567对放大后的信号进行频率监视和控制。一旦探头接到回波,若接收到的信号频率等于振荡器的固有频率(此频率主要由RC值决定),则其输出引脚的电平将从“1”变为“0”(此时锁相环已进入锁定状态),这种电平变化可以作为单片机对接收探头的接收情况进行实时监控。可对测得数据优化处理,并采用温度补偿,使测量误差降到更低限度;AT89C52还控制显示电路,用动态扫描法来实现LED数字显示。3.2 系统总

24、体结构设计超声波测距仪系统结构如图3.2所示。它主要由单片机、超声波发射及接收电路、超声波传感器、LED显示电路及电源电路组成。系统主要功能包括:1) 超声波的发射、接收,并根据计时时间计算测量距离;2) 通过LED电源指示灯,检测电源电路是否正常工作;3) LED显示器显示距离;4) 单片机综合处理接收到的数据;5) 当系统运行不正常时,用上电复位电路复位。4位LED显示器复位电路电源电路AT89C52超声波发射电路超声波接收电路T40R40图3.2 超声波测距仪系统结构框图第4章 硬件电路的主要元器件介绍4.1 单片机AT89C52单片机即单片微型计算机SCMC(Single Chip M

25、icro Computer)。它把构成一台计算机的主要功能部、器件,如CPU(进行运算、控制)、RAM(数据存储)、ROM(程序存储)、输入/输出设备(例如:串行口、并行输出口等)、中断系统、定时/计数器等集中在一块芯CPU(进行运算、控制)、RAM(数据存储)、ROM(程序存储)、输入/输出设备(例如:串行口、并行输出口等)制功能,所以又称为微控制器MCU(Microcontroller Unit)。相对于普通微机,单片机的体积要小得多,一般嵌入到其他仪器设备里,实现自动检测与控制,因此也称为嵌入式微控制器EMCU(Embedded Microcontroller Unit)。本设计的MCU

26、采用的是DIP(Dual In-line Package塑料双列直插式)封装的AT89C52高性能8位单片机。AT89C52是一个低电压,高性能CMOS 8位单片机,片内含8k bytes的可反复擦写的Flash只读程序存储器和256 bytes的随机存取数据存储器(RAM),器件采用ATMEL公司的高密度、非易失性存储技术生产,兼容标准MCS-51指令系统,片内置通用8位中央处理器和Flash存储单元,内置功能强大的微型计算机的AT89C52提供了高性价比的解决方案。AT89C52是一个低功耗高性能单片机,40个引脚,32个外部双向输入/输出(I/O)端口,同时内含3个外中断口,2个16位可

27、编程定时计数器,2个全双工串行通信口,AT89C52可以按照常规方法进行编程,也可以在线编程。其将通用的微处理器和Flash存储器结合在一起,特别是可反复擦写的Flash存储器可有效地降低开发成本。其引脚图如右图4.1.1。AT89C52的引脚功能有: 图4.1 .1 AT89C52的引脚图1) 主电源引脚VSS第20脚,电路接地电平。VCC第40脚,正常运行和编程校验+5V电源。2) 时钟源XTAL1第19脚,一般外接晶振的一个引脚,它是片内反相放大器的输入端口。当直接采用外部信号时,此引脚应接地。XTAL1第18脚,接外部晶振的另一个引脚,它是片内反相放大器的输出端口。当采用外部振荡信号源

28、泉时,此引脚为外部振荡信号的输入端口,与信号源相连接。3) 控制、选通或复用RST/VPD第9脚,RESET复位信号输入端口。当单片机正常工作时,由该引脚输入脉宽为2个以上机器周期的高电平复位信号到单片机。在VCC掉电期间,此引脚(即VPD)可接通备用电源,以保持片内RAM信息不受破坏。第30脚,输出允许地址锁存信号。当单片机访问外部存储器时,ALE信号的负跳变将P0口上的低8位地址送入锁存器。在非访问外部存储器期间,ALE仍以1/6振荡频率固定不变地输出,因此它可对个输出或用于定时目的。要注意的是:每当访问外部存储器时将跳过一个ALE脉冲。为第二功能,当对片内程序存储器编程写入时,此引脚作为

29、编程脉冲输入端。第29脚,访问外部程序存储器选能信,低电平有效。当AT89C51由外部程序存储器取指令(或数据)时,每个机器周期两次有效,即输出两个脉冲。在此期间,当访问外部数据存储器,这两次有效的 信号不出现。:外部访问允许。欲使CPU访问外部程序存储器(地址0000H-FFFFH),端必须保持低电平(接地)。需注意的是:如果加密位LBI被编程,复位时内部会锁存端状态。Flash存储器编程时,该引脚加上+12V的编程允许电源VPP,当然这必须是该器件是使用12V编程电压VPP。4) 多功能I/O端口P0口第3239脚,8位漏极开路双向I/O端口。作为输出口用时,每位能吸收电流的方式驱动8个T

30、TL逻辑门电路,对端口写“1”可作为高阻抗输入端用。在访问数据存储器或程序存储器时,这组口线分时转换地址和数据总线复用,在访问期间激活内部上拉电阻。P1口第18脚,具有内部上拉电路的8位准双向I/O端口。在对片内程序存储器(EPROM型)进行程序编程和校验时,用做低8位地址总线。P2口第2128脚,具有内部上拉电路的8位准双向I/O端口。当单片机访问存储器时,用做高8位地址总线;在对片内程序存储器(EPROM型)进行程序编程和校验时,亦用做高8位地址总线。P3口第1017脚,具有内部上拉电路的8位准双向I/O端口。它还提供特殊的第二变异功能。它的每一位均可独立定义为第一功能的I/O口或第二变异

31、功能。第二变异功能的具体含义如表4.1.2:端口引脚第二功能P3.0RXD (串行输入口)P3.1TXD (串行输出口)P3.2 (外中断0)P3.3 (外中断1)P3.4T0 (定时/计数器0)P3.5T1 (定时/计数器1)P3.6 (外部数据存储器写选通)P3.7 (外部数据存储器读选通)表4.1.2 P3口的第二变异功能4.2 超声波传感器超声波传感器主要有电致伸缩和磁致伸缩两类,电致伸缩采用双压电陶瓷晶片制成,具有可逆特性。压电陶瓷片具有如下特性:当在其两端加上大小和方向不断变化的交流电压时,就会产生“压电效应”,使压电陶瓷也产生机械变形,这种机械变形的大小以及方向与外加电压的大小和

32、方向成正。也就是说,若在压电晶片两边加以频率为的交流电电压时,它就会产生同频率的机械振动,这种机械振动推动空气的张弛,当落在音频范围内时便会发出声音。反之,如果由超声波机械振动作用于陶瓷片使其发生微小的形变时,那么压电晶片也会产生与振动频率相同的微弱的交流信号。超声波传感器结构如下:图4.2.2传感器外部结构图4.2.1元件内部结构第5章 超声波测距硬件电路设计5.1 超声波发射电路超声波发射电路原理图如图5.1所示。发射电路主要由反相器74HC04和超声波发射换能器T40构成,单片机P3.3端口输出的40kHz的方波信号一路经一级反向器后送到超声波换能器的一个电极,另一路经两级反向器后送到超

33、声波换能器的另一个电极,用这种推换形式将方波信号加到超声波换能器的两端,可以提高超声波的发射强度。输出端采用两个反向器并联,用以提高驱动能力。上位电阻R1、R5一方面可以提高反向器74HC04输出高电平的驱动能力,另一方面可以增加超声波换能器的阻尼效果,缩短其自由振荡时间。图5.1 超声波发射电路原理图5.2 超声波接收电路超声波接收包括接收探头,信号放大以及波形变换电路三部分,超声波接收探头必须与发送探头相同的型号,否则可能导致接收效果甚至不能接收。由于超声波接收探头的信号非常弱,所以必须用放大器放大,放大后的正弦波不能被微处理器处理,所以必须经过波形变换。本次设计为了降低调试难度,减少成本

34、,提供系统可靠性,所以我们采用了一种用在彩色电视机上面的一种红外接收检波芯片CX20106A,由于红外遥控的中心频率在38KHz,和超声波的40KHz很接近,所以可以用来做接收电路。CX20106A是日本索尼公司的产品,采用单列8引脚的直插式封装,内部包含自动偏置控制电路、前置放大电路、带通滤波、峰值检波、积分比较器、斯密特整形输出电路,配合少量外接元件就可以对38KHz左右的信号的接收与处理。超声波接收电路如图5.2所示。图5.2 超声波接收电路5.3 四位LED数码管显示电路显示电路如图5.3,四位LED组成动态扫描电路,由AT89C52的P0口输出。动态扫描时,由P2口控制LED的当前显

35、示位。当距离测量结束并调用显示程序,就会显示距离大小,显示两位小数。超声波显示电路如图5.3所示:图5.3 显示电路图5.3超声波显示电路5.4 USB供电电源电路电源电路如图5.4所示。为方便起见,本设计采用的是5V USB供电,输出+5V稳恒直流电,作为电路的电源。LED是电源指示灯,通电后发光。图5.4 电源电路5.5 单片机复位电路AT89C52复位有一个专用的外部引脚RESET,外部可通过此引脚输入一个正脉冲使单片机复位。所谓复位,就是强制单片机系统恢复到确定的初始状态,并使系统重新从初始状态开始工作。本设计采用的是电平式开关与上电复位电路,为了能使运行中的系统,经人工干预,强制系统

36、进行复位。复位电路图如5.5所示:图5.5 复位电路第6章 软件控制程序的设计与概述6.1 主程序流程主程序对整个单片机系统进行初始化后,先将超声波的回波接收标志位置位并且使单片机P3.3端口输出一个低电平用来启动超声波发射电路,同时将定时器T0启动,然后调用距离计算的子程序,再根据定时器T0记录的时间计算出所需要测量的距离,然后再调用显示子程序,再将测出的距离以十进制的形式送到数码管显示。最后主程序通过对回波信号的接收,完成后续的工作,假如标志位清零则说明接收到了回波信号,那么主程序就返回到初始端重新将回波接收标志位置位,并且在单片机的P3.3端口上发送低电平到超声波发射电路,就这样,连续不

37、断地运行,循环不断地工作用来实现测距。 整个系统的设计的关键是对距离进行测量的,然后通过单片机来处理测量数据是比较容易实现的,能精确的实现测距。在测距中,各种信号包括温度对声速的影响都将干扰到测距的准确性,其中超声波的余波信号对整个设计中测距的精确度的干扰的影响比较大。超声波接收回路中的超声波信号一共有两种波信号:第一种波信号为余波信号就是当发射探头发射出信号之后,超声波接收探头马上就接收到的超声波信号,实际就是超声波的发射信号;另一种波信号就是有效信号,即经过障碍物表面反射回来的超声波回波信号,也是所需要测量的距离数值。 在进行超声波测距时,实际上测距就是记录从超声波发射电路发射超声波信号开

38、始到接收到信号的声波的往返时间差,然后通过数据计算出距离,对于回波信号需要进行检测的有效信号是反射物体反射的回波信号,所以要尽量避免在检测时候检测到余波信号。余波就是在发射超声波时超声波信号直接到达接收探头的波信号,同时余波信号也是超声波测量时存在测量盲区的最主要的原因。 超声波接收电路在接收到超声波回波后,通过CX20106A电路进行检波整形比较,并向单片机发出有效信号,单片机通过外部中断的改变记录回波信号的到达时间,中断发生之后就是表示已经接收到了回波信号,这个时候停止计时,并且读取计数器中的数值,这个数值就是需要进行测量的时间差的数据。程序中对测距距离的计算方法是按S=17N/1000=

39、0.017N(cm)进行计算的,其中,N为计数器的值,声速的值取为340 m/s。 综合以上的分析可得到系统主程序流程图,系统主程序的流程图如图6.1所示。开始单片机初始化超声波模块复位发射超声波并启动T0开中断接收到回波的同时中断停止计算测量距离显示距离延时图6.1 系统主程序流程图6.2 子程序设计6.2.1 超声波发送子程序及超声波接收中断子程序超声波发生子程序的作用是通过P3.3端口发送超声波脉冲信号(频率约40kHz的方波),脉冲宽度为12s左右,同时把计数器T1打开进行计时,定时器T1工作在方式0。超声波测距仪主程序利用外中断1检测返回超声波信号,一旦接收到返回超声波信号(即引脚出

40、现低电平),立即进入中断程序。进入中断后就立即关闭计时器T1停止计时,并将测距成功标志字赋值1。如果当计时器溢出时还未检测到超声波返回信号,则定时器T1溢出中断将外中断1关闭,并将测距成功标志字赋值0表示此次测距不成功。T0中断服务程序如下:sbit send=P33;void timer0(void)interrupt 1 send=!send; TH0=0x1f; TL0=0xf4;超声波接收(外部中断1)程序:void int1(void)interrupt 2 if(TH1!=0x00&TH0!=0x00) b=1; TR1=0; TR0=0; t=TH1*256+TL1; t=t/1

41、000000; TH0=0x1f; TL0=0xf4; TH1=0x00; TL1=0x00;else b=0; TR1=0; TR0=0; TH0=0x1f; TL0=0xf4; TH1=0x00; TL1=0x00; 6.2.2 距离计算子程序当超声波往返时间测量出来后,用C语言根据公式计算距离来编程是比较简单的算法。根据测量距离,而其中,故可简化为:,其实现程序算法如下:#includevoid distance(void)double radical,dist,t;radical=sqrt(1+(temnum+273)/273);dist=165.7*t*radical;return(

42、dist);6.2.3 显示子程序显示电路由四位LED组成动态扫描电路,编程比较简单,详情可见附录B。第7章 软件调试及系统仿真7.1 软件编译调试环境Keil单片机开发中除必要的硬件外,同样离不开软件,我们写的汇编语言源程序要变为CPU可以执行的机器码有两种方法,一种是手工汇编,另一种是机器汇编,目前已极少使用手工汇编的方法了。机器汇编是通过汇编软件将源程序变为机器码,用于MCS-51单片机的汇编软件有早期的A51,随着单片机开发技术的不断发展,从普遍使用汇编语言到逐渐使用高级语言开发,单片机的开发软件也在不断发展,Keil软件是目前最流行开发MCS-51系列单片机的软件,这从近年来各仿真机

43、厂商纷纷宣布全面支持Keil即可看出。Keil提供了包括C编译器、宏汇编、连接器、库管理和一个功能强大的仿真调试器等在内的完整开发方案,通过一个集成开发环境(uVision)将这些部份组合在一起。掌握这一软件的使用对于使用51系列单片机的爱好者来说是十分必要的,如果你使用C语言编程,那么Keil几乎就是你的不二之选,即使不使用C语言而仅用汇编语言编程,其方便易用的集成环境、强大的软件仿真调试工具也会事半功倍。7.2 Keil工程文件的建立、设置与目标文件的获得7.2.1 Keil工程的建立首先启动Keil软件的集成开发环境,如果已正确安装了该软件,可以从桌面上直接双击uVision的图标以启动

44、该软件。uVison启动后,程序窗口的左边有一个工程管理窗口,该窗口有3个标签,分别是Files、Regs、和Books,这三个标签页分别显示当前项目的文件结构、CPU的寄存器及部份特殊功能寄存器的值(调试时才出现)和所选CPU的附加说明文件,如果是第一次启动Keil,那么这三个标签页全是空的。1) 源文件的建立使用菜单“File-New”或者点击工具栏的新建文件按钮,即可在项目窗口的右侧打开一个新的文本编缉窗口,在该窗口中输入汇编语言或C语言源程序,然后保存该文件,注意必须加上扩展名(汇编语言源程序一般用asm或a51为扩展名,而C语言源程序一般用c为扩展名),这里假定将文件保存为exam1

45、.asm。需要说明的是,源文件就是一般的文本文件,不一定使用Keil软件编写,可以使用任意文本编缉器编写,而且,Keil的编缉器对汉字的支持不好,建议使用UltraEdit之类的编缉软件进行源程序的输入。2) 建立工程文件在项目开发中,并不是仅有一个源程序就行了,还要为这个项目选择CPU(Keil支持数百种CPU,而这些CPU的特性并不完全相同),确定编译、汇编、连接的参数,指定调试的方式,有一些项目还会有多个文件组成等,为管理和使用方便,Keil使用工程(Project)这一概念,将这些参数设置和所需的所有文件都加在一个工程中,只能对工程而不能对单一的源程序进行编译(汇编)和连接等操作。点击“Project-New Project”菜单,出现一个对话框,要求给将要建立的工程起一个名字,可以在编缉框中输入一个名字

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 办公文档 > 其他范文


备案号:宁ICP备20000045号-2

经营许可证:宁B2-20210002

宁公网安备 64010402000987号