取整函数解读.doc

上传人:牧羊曲112 文档编号:4156576 上传时间:2023-04-07 格式:DOC 页数:20 大小:1.68MB
返回 下载 相关 举报
取整函数解读.doc_第1页
第1页 / 共20页
取整函数解读.doc_第2页
第2页 / 共20页
取整函数解读.doc_第3页
第3页 / 共20页
取整函数解读.doc_第4页
第4页 / 共20页
取整函数解读.doc_第5页
第5页 / 共20页
点击查看更多>>
资源描述

《取整函数解读.doc》由会员分享,可在线阅读,更多相关《取整函数解读.doc(20页珍藏版)》请在三一办公上搜索。

1、关于x以及x的性质与应用摘 要:和是非常重要的数论函数,其他许多数学分支都要涉及到,在国内外的数学竞赛中也经常出现含有和的问题,这类问题新颖独特,颇具启发性。本文主要讨论以及的性质,和以及在数学中的应用,以及以及在数学竞赛中的应用。关键词: 取整函数;小数函数;性质;应用;例题Abstract :x and x are the extremely important arithmetical functions, other many mathematics branch all must involve, also frequently appears in the domestic and

2、 foreign mathematics competition includes x and the x question, this kind of question novel unique, quite has the instructive.This article mainly discusses x as well as the x nature, with x as well as x in mathematical analysis application, as well as x as well as x in mathematics competition applic

3、ation.Key words: Integer function Decimal function Nature Application Sample question 目录1、引言- 1 -2、x以及x的定义- 1 -2.1、取整函数x的定义- 1 -2.2、小数函数x的定义- 3 -3、取整函数x的基本性质及证明- 3 -4、取整函数x以及小数函数x的图像及其性质- 5 -5、取整函数x以及小数函数x在解题中的应用- 6 -5.1、取整函数x一些基本性质的应用- 6 -5.2、数学竞赛中用多种方法解决取整函数- 7 -5.3、取整函数x在极限、积分、导数、级数中的应用例题- 11 -6、

4、回答引言提出的问题- 13 -7、总结- 14 -参考文献- 15 -致 谢- 16 -1、引言某市电信局130手机与137、138、139手机有不同是收费方式。137、138、139手机的收费方式为:月租费50元,基本通话费0.40元/分钟,不足一分钟按一分钟计算。130手机的收费方式为:没有月租费,但是基本通话费为0.54元/分钟,不足一分钟也按一分钟计算。小明今购了一部手机,他每月通话的时间大约20小时,请帮他参考一下,选用哪种收费方式的手机网络合算?我们可以用取整函数解决这个问题,那什么是取整函数呢?我们在学习数学的过程中,常常看到取整函数的身影,在离散数学、微积分、数学分析中都有取整

5、函数的应用,纵观几年的数学竞赛,发现了取整函数也是数学竞赛的热点之一。然而含有取整函数的题目往往比较困难,要解决关于取整函数的问题我们就要好好了解取整函数,什么是取整函数,它有什么性质,它的应用有哪些。2、x以及x的定义12.1、取整函数x的定义 函数,称为高斯函数,又称取整函数。 给定实数,我们可以对它进行一种特殊的运算取整运算,即取出不超过的最大整数部分,通常记为,满足下面的三个条件:(1) 是整数;(2) ; (3) +1。这就是说,整数不超过,而由(3)可知,大于的整数+1,+2,都大于,即是不超过的最大整数。与之间适合-1 +1例如:6=6,3.2=3,=1,-4=-4,-0.1=-

6、1,-3.5=-4。对于较小的,我们不难求。但是对较大的,求的基本方法还是回到定义中去,即对作适当的估计或变形。例题1 求以及的整数部分,这里的n为正整数。解 先来求,为此作421的如下估计:,推出20是不超过的最大整数,所以=20。求的方法还是要先估计,我们有,故由于是整数,上面的不等式表明介于两个相继的整数之间,所以=。注:此题是根据取整函数x的定义分别对相对简单及相对困难的函数进行取整运算例题2求适合-2=0的一切实数解:,得-2-2=0-20(-2)(+1) 0于是-12当01时,=0代入原式,得=2(不正确);当12时,=1,代入原式,得=3(正确);当=2时,代入原式,得=4(正确

7、),所以=3,4注:此题是对取整函数x定义的应用2.2、小数函数x的定义和整数部分紧密相关的是其小数部分,记为,定义为 =-,由 +1不难得知01,反过来,若=,自然有=0。这些简单的事实有时很有用处,对于给定的,要求出,先求出就可以。例题3 求所有的正数,使得其整数部分以及小数部分满足关系。解:设=n, =t,则n 0,0 t1,由于=+,所以 (1)如果t=0,则由上式知n=0,从而x=0,这不合要求。现在设,则,但由(1)知,所以,即再从0 t1可见0n2由于n是整数,所以n=1,由(1)得到,解得,因此,所求的正数只有一个,即为1+=3、取整函数x的基本性质及证明由取整函数的定义可以得

8、到以下性质定理1 设,我们有: (1) (2) 若则 (3) (4) (5) (6) 或 (7) 定理2 若,m,则=例题4 证明定理2证 :由+1,两边乘以得 (+1)由于 ,(+1)都是整数,于是 (+1),即1, N,则从1到的整数中,的倍数有/个例题5 证明定理3证:由+1,两边乘以m得 x(+1)由此可见,从1到的整数中,的倍数是,2, ,它们共有/个。定理4设为任一素数,在中含的最高乘方次数记为,则有:例题62 证明定理4证明:由于是素数,所有中所含的次方数等于的各个因数所含的次方数之总和。由定理3可知,在中,有个的倍数,有个的倍数,有个的倍数,当时,所以命题成立。由定理4得出的推

9、论 若p是大于n的任一个素数,则的标准分解式为=,其中n1,mN,则从1到的整数中,m的倍数有/m个。5.2、数学竞赛中用多种方法解决取整函数下面是关于解决取整函数的多种数学方法的例题:例题94 若实数使得,求。解:等式左边共73项,且因都小于1,则每一项为或,注意到,故必有。进一步有:,所以原式左边从第1项至第38 项其值为7,自第39项以后各项值为8。即:注:此题采用了分类讨论法。例题105 求的值。解:由题意得:对于任意的由于 注:本题采用了分组凑整的思想例题11对任意的,证明:证明:首先证明。令,则当时,于是,那么,当时,即,那么。所以命题成立,也就是:。故: 又: 注:本例的证明采用

10、了“两边夹”6法则。若且,则,我们把这个结论叫做“两边夹”法则。例题12,解方程解:令 ,则,带入原方程整理得:,由取整函数的定义有,解得:,则。若,则;若,则。注:本例中方程为7型的,通常运用取整函数的定义和性质并结合换元法求解。例题13 解方程解:由取整函数的性质,得:,即,令,在同一坐标系中画出二者的图象:分析两者在区间内的图象,显然,当时, 而,方程不成立;当时, ;当时, ;当 时, 而,方程不成立。综上所述,原方程的解是:。注:本例为型方程。首先由,求出的取值区间。但此条件为原方程成立的充分但不必要条件,故还须利用和的图象进行分析才能得到正确结果。例题14,解方程解:若,则,原方程

11、不成立;若,则,原方程不成立;若,则,原方程不成立; 若,则原方程即为;解得:;若,则,原方程不成立;所以,原方程的解为:。注:此题采用的是分区讨论法例题15 证明:若是大于2的质数,则被整除。证明:由二项式定理知:对于任意的是一个整数,又因为, 于是有: ,其中是质数。因为都能被质数整除,所以原命题成立。注:本题采用的是构造法,所谓构造法就是通过建立结构或体系,构造对象或指出达到某种目的的方式和途径。以上是解决取整函数的多种数学方法,不难看出取整函数为什么成为数学竞赛中的热点,关于取整函数的题型是多种多样的,而解决的方法也很多,在解决关于取整函数的题目的过程中可以很好的体现出学生对数学的综合

12、运用,取整函数作为一个初等函数,它非常重要,它的应用也非常广,下面我们来对它进行推广,看看它在数学中在极限 导数 积分 级数的应用。5.3、取整函数x在极限、积分、导数、级数中的应用例题例题16 (极限问题)注:,称A为函数当趋于时的极限,此题是含有取整函数的极限问题。例题17设,求与。解 当时,当时,。因此,有,所以在内连续。又,所以在整数点k也连续。当时,当时,类似地有。注:设函数在点的某领域内有定义,若极限存在,则称函数在点处可导,并称该极限为函数在点处可导,此题是含有取整函数的求导问题。例题18 求积分 (为有限的自然数).(积分问题) 解 = 利用以上积分的结果很容易得到的积分,即=

13、 = = =注:,这个题是含取整函数的定积分问题,根据也可以积分。例题19 讨论的收敛性(级数问题)解 因为,发散,所以级数非绝对收敛。当时,保持定号,所以有其中,显然,。当k充分大时单调递减且时,所以有交错级数的莱布尼兹定理知收敛,从而原始级数条件收敛。注:此题是含有取整函数的级数问题,。 以上就是关于x以及x的性质与应用,从中可以看出取整函数应用的广泛性,以及它在数学领域的重要性,从而也体现出了研究取整函数的价值。6、回答引言提出的问题通过以上对取整函数定义、性质以及应用的说明,我们可以用取整函数解决引言部分提出的手机收费问题。解决这个问题时,需要分别建立两种手机网络通话费y与通话时间x之

14、间的函数关系式,再根据每月的通话时间,比较两种函数值的大小来决定。=20(小时)=1200(分钟)130手机通话费用y与通话时间(分钟)之间的函数关系为:137、138、139手机通话费用y与通话时间(分钟)之间的函数关系为:所以小明应该选择137、138、139收费方式的网络更合算。7、总结 数学家华罗庚曾经说过:宇宙之大,粒子之微,火箭之速,化工之巧,地球之变,日用之繁,无处不用数学。这是对数学与生活的精彩描述。 数学提供了有特色的思考方式:抽象化、符号化、公理化、最优化、建立模型,应用这些思考方式能使人们批判的阅读,辨别谬误,摆脱偏见,估计风险。 数学是思维的工具,数学的抽象性帮助为我们

15、抓住事物的共性和本质,数学赋予知识以逻辑的严密性和结论的可靠性,数学是思维的体操,它能增强思维的本领,提高抽象能力、逻辑能力和辩证思维能力。 数学教学与社会生活相互依存,相互融合,数学问题来源与生活。而生活问题又可用数学知识来解决。不管对于什么东西,我们都要经历四个步骤去认识它:了解,发现,验证,应用。本文通过对取整函数以及小数函数的定义、性质、图像及其性质以及应用的逐一详解,很好的展现了取整函数。从而也完成了关于以及的性质与应用的论文。参考文献1 余红兵.浅谈以及.华东师范大学出版社(M). 2002年.2 余元希,田万海,毛宏德.初等代数研究.高等教育出版社(M).2007年4月.3 肖果

16、能.初等数学思想方法选讲.湖南教育出版社(J),2001.104 穆德华.中学数学竞赛辅导讲座;昭通师范高等专科学校学报(J);1989年S1期.5 朱立. 取整函数在中学数学竞赛中的应用.大众科学.科学研究与实践(J).2008年10期.6 张顺燕.数学的思想方法和应用.北京大学出版社(M),2009.87 潘承洞,潘承彪.初等数论.北京大学出版社(M),1992.致 谢 大学生活一晃而过,回首走过的岁月,真是感慨万千,当我写完这篇论文的时候,有一种如释重负的感觉,心里好踏实。 首先要感谢我的指导老师王文武老师,从选题开始他就给了我很多的帮助,论文题目是老师拟的,老师还介绍了一些参考文献,在修改初稿的时候也提出了很多不足需要改正的地方,平时有问题的时候他也会很耐心的帮助我们。就是因为他耐心负责的态度,让我完成了我的毕业论文。 其次要感谢我的同学们和给我知识的老师们,虽然我们每个人都在做不同的事,但是都彼此给予帮助、鼓励,让我们彼此能完成自己的任务。 最后要感谢一切给予过我帮助的人,包括我的父母、我的朋友、包括每一个对我微笑的人,我想心灵的支撑是我们彼此之间最大的鼓励。 我要衷心的对每一个帮助过我的人说声谢谢。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 生活休闲 > 在线阅读


备案号:宁ICP备20000045号-2

经营许可证:宁B2-20210002

宁公网安备 64010402000987号