《中国食品价格指数的影响因素分析.doc》由会员分享,可在线阅读,更多相关《中国食品价格指数的影响因素分析.doc(8页珍藏版)》请在三一办公上搜索。
1、关键词:食品价格指数 多因素分析 预测模型 模型检测与修正二、模型设定在本文中,我们选取粮食价格指数、肉禽及制品价格指数、水产品价格指数、蔬菜价格指数作为解释变量,选取食品价格指数作为被解释变量,构建多元线性回归模型:Y=0+1X1 +2X2 +3X3 +4X4 +i其中:Y 食品价格指数 X1 粮食价格指数 X2 肉禽价格指数 X3 水产品价格指数 X4 蔬菜价格指数三、模型的估计与调整通过使用Eviews计量经济学分析软件,得到了一下回归分析结果Dependent Variable: YMethod: Least SquaresDate: 05/03/14 Time: 19:50Sampl
2、e: 2014:01 2014:04Included observations: 27VariableCoefficientStd. Errort-StatisticProb. C7.2991204.8192871.5145640.1441X10.4531110.0604837.4915000.0000X20.2255630.02100210.740120.0000X30.1764920.0642352.7475760.0118X40.0593710.0123924.7909120.0001R-squared0.990031 Mean dependent var108.2515Adjusted
3、 R-squared0.988219 S.D. dependent var4.152074S.E. of regression0.450673 Akaike info criterion1.409427Sum squared resid4.468336 Schwarz criterion1.649396Log likelihood-14.02726 F-statistic546.2222Durbin-Watson stat0.901780 Prob(F-statistic)0.0000001.多重共线性检验。(1) 直观的来看,x1、x3的相关系数达到了0.80,x2、x3的相关系数达到了0.
4、88。所以可以认为存在较严重的多重共线性。(2) 修正多重共线性现剔除x3进行回归,结果如下:Dependent Variable: YMethod: Least SquaresDate: 05/03/14 Time: 21:40Sample: 2014:01 2014:04Included observations: 27VariableCoefficientStd. Errort-StatisticProb. C5.2102285.3941020.9659120.3441X10.5787620.04486712.899600.0000X20.2749320.01232422.308120.
5、0000X40.0758200.0122986.1650940.0000R-squared0.986610 Mean dependent var108.2515Adjusted R-squared0.984864 S.D. dependent var4.152074S.E. of regression0.510823 Akaike info criterion1.630366Sum squared resid6.001621 Schwarz criterion1.822342Log likelihood-18.00994 F-statistic564.9205Durbin-Watson sta
6、t0.921999 Prob(F-statistic)0.000000由上图可看出,剔除x3后,拟合优度非常好,且显著性明显。再剔除x1进行回归,结果入下:Dependent Variable: YMethod: Least SquaresDate: 05/03/14 Time: 21:43Sample: 2014:01 2014:04Included observations: 27VariableCoefficientStd. Errort-StatisticProb. C32.394936.3853025.0733580.0000X20.1426790.0329004.3367320.0
7、002X30.5403430.0774786.9741530.0000X40.0144350.0199850.7222650.4774R-squared0.964601 Mean dependent var108.2515Adjusted R-squared0.959983 S.D. dependent var4.152074S.E. of regression0.830589 Akaike info criterion2.602589Sum squared resid15.86718 Schwarz criterion2.794565Log likelihood-31.13496 F-sta
8、tistic208.9094Durbin-Watson stat1.044482 Prob(F-statistic)0.000000由上图可以看出,剔除x1后,导致x4通不过t检验。剔除x2进行回归,结果如下:Dependent Variable: YMethod: Least SquaresDate: 05/03/14 Time: 21:41Sample: 2014:01 2014:04Included observations: 27VariableCoefficientStd. Errort-StatisticProb. C16.3409511.595881.4092020.1722X1
9、0.1109050.1256320.8827720.3865X30.7667330.0812689.4346090.0000X4-0.0321650.021984-1.4630590.1570R-squared0.937763 Mean dependent var108.2515Adjusted R-squared0.929645 S.D. dependent var4.152074S.E. of regression1.101317 Akaike info criterion3.166844Sum squared resid27.89668 Schwarz criterion3.358820
10、Log likelihood-38.75239 F-statistic115.5183Durbin-Watson stat1.495176 Prob(F-statistic)0.000000由上图可知,剔除x2后,导致x1,x4都通不过t检验,且可决系数大幅降低。剔除x4进行回归,结果入下:Dependent Variable: YMethod: Least SquaresDate: 05/03/14 Time: 21:44Sample: 2014:01 2014:04Included observations: 27VariableCoefficientStd. Errort-Statist
11、icProb. C21.060075.4100843.8927440.0007X10.3128540.0739924.2282150.0003X20.1563630.0213157.3358800.0000X30.3251700.0786274.1355880.0004R-squared0.979631 Mean dependent var108.2515Adjusted R-squared0.976974 S.D. dependent var4.152074S.E. of regression0.630052 Akaike info criterion2.049924Sum squared
12、resid9.130200 Schwarz criterion2.241900Log likelihood-23.67397 F-statistic368.7162Durbin-Watson stat2.010366 Prob(F-statistic)0.000000 由上图可看出,x4的存在不影响本文的分析结果,没必要剔除。所以综上所述,剔除x3,得到一下回归分析结果:Dependent Variable: YMethod: Least SquaresDate: 05/31/12 Time: 21:40Sample: 2014:01 2014:04Included observations:
13、 27VariableCoefficientStd. Errort-StatisticProb. C5.2102285.3941020.9659120.3441X10.5787620.04486712.899600.0000X20.2749320.01232422.308120.0000X40.0758200.0122986.1650940.0000R-squared0.986610 Mean dependent var108.2515Adjusted R-squared0.984864 S.D. dependent var4.152074S.E. of regression0.510823
14、Akaike info criterion1.630366Sum squared resid6.001621 Schwarz criterion1.822342Log likelihood-18.00994 F-statistic564.9205Durbin-Watson stat0.921999 Prob(F-statistic)0.000000得到的回归方程为=5.210228+0.578762X1 +0.274932X2 +0.07582X4 (0.965912) (12.8996) (22.3081) (6.165094) R2=0.9866 Adjusted R-squared =0
15、.9849 F=564.9205从回归的结果可以得到R2=0.9866,修正的可决系数为0.9849,这说明模型对样本的拟合度非常好。 2.相关性检验从估计的结果可以看出,模型拟合较好,可决系数R=0.9866,修正的可决系数为0.9849,表明模型在整体上拟合比较好。3.显著性检验(1)对于1,t统计量为12.8996。给定=0.05,查t分布表,在自由度为n-4=23下,得临界值t0.025(23)=2.069,因为tt0.025(23),所以拒绝原假设H0: 1=0,表明粮食价格指数对食品价格指数有显著性影响;(2)对于2,t统计量为22.3081。给定=0.05,查t分布表,在自由度为
16、n-4=23下,得临界值t0.025(23)= 2.069,因为tt0.025(23),所以拒绝原假设H0: 2=0,表明肉禽价格指数对食品价格指数有显著性影响。(3)对于4,t统计量为6.165094。给定=0.05,查t分布表,在自由度为n-4=23下,得临界值t0.025(23)= 2.069,因为tt0.025(23),所以拒绝原假设H0: 4=0,表明蔬菜价格指数对食品价格指数有显著性影响。 (4)对于F=564.9205F(3,23)=3.03(显著性水平为0.05),表明模型从整体上看食品价格指数与各解释变量之间线性关系显著。 4序列相关检验(1) 由图可知,存在一阶自相关。(2
17、) 修正:用科克伦-奥克特迭代方程法对模型进行修正,得到如下结果:Dependent Variable: YMethod: Least SquaresDate: 05/03/14 Time: 13:10Sample(adjusted): 2014:01 2014:04Included observations: 26 after adjusting endpointsConvergence achieved after 10 iterationsVariableCoefficientStd. Errort-StatisticProb. C5.1691879.8464600.5249790.60
18、51X10.5631620.0877866.4151880.0000X20.2821290.01771215.928550.0000X40.0845860.0103308.1882700.0000AR(1)0.5840820.1869773.1238250.0051R-squared0.989380 Mean dependent var108.5496Adjusted R-squared0.987357 S.D. dependent var3.928543S.E. of regression0.441736 Akaike info criterion1.374831Sum squared re
19、sid4.097737 Schwarz criterion1.616772Log likelihood-12.87280 F-statistic489.0816Durbin-Watson stat1.380596 Prob(F-statistic)0.000000Inverted AR Roots .58得到一阶自相关系数估计为0.584082再次检验是否存在自相关:由上图可知,修正后不再存在自相关。综上,本研究模型估计的最终结果为得到的回归方程为=5.1691+0.5631X1 +0.2821X2 +0.0846X4 (0.5250) (6.4152) (15.9286) (8.1883)
20、R2=0.9894 Adjusted R-squared =0.9874 F=489.0816经济意义检验:从经济意义上来看,该模型说明了在假定其他变量不变的情况下,粮食价格指数每上升1%,食品价格指数上涨0.5631%;肉禽及制品价格指数每上升1%,食品价格指数上涨0.2821%;蔬菜价格指数每上升1%,食品价格指数上涨0.0846%。由于各变量都通过了检验,所以说明各变量对被解释变量都起到了很好的作用。5因果关系检验对x1,y进行因果关系检验,结果如下:Pairwise Granger Causality TestsDate: 05/03/14 Time: 21:54Sample: 201
21、4:01 2014:04Lags: 2 Null Hypothesis:ObsF-StatisticProbability Y does not Granger Cause X125 1.09403 0.35409 X1 does not Granger Cause Y 2.86637 0.08043由上图可知,选定显著性水平(如10%),0.350.1,则在该显著性水平下,接受原假设,表示食品价格指数对粮食价格指数没有影响;0.080.1,则在该显著性水平下,接受原假设,表示食品价格指数对肉禽价格指数没有影响;0.30.1,接受原假设,表示粮食价格指数对食品价格指数没有显著性的影响。对x4,
22、y进行因果关系检验,结果如下:Pairwise Granger Causality TestsDate: 05/03/14 Time: 20:36Sample: 2014:01 2014:04Lags: 4 Null Hypothesis:ObsF-StatisticProbability Y does not Granger Cause X423 5.12876 0.00932 X4 does not Granger Cause Y 1.40301 0.28366由上图可知,选定显著性水平(如10%),0.0090.1,接受原假设 ,表示蔬菜价格指数对食品价格指数没有影响。四、 结论及政策建议本研究的结果表明,食品价格指数确实受到粮食价格指数、肉禽及其制品价格指数、蔬菜价格指数四个因素的影响,从经济意义上来看,该模型说明了在假定其他变量不变的情况下,粮食价格指数每上升1%,食品价格指数上涨0.5631%;肉禽及制品价格指数每上升1%,食品价格指数上涨0.2821%;蔬菜价格指数每上升1%,食品价格指数上涨0.0846%。由于各变量都通过了检验,所以说明各变量对被解释变量都起到了很好的解释作用。