中考数学动态几何探究题分类练习汇总.doc

上传人:小飞机 文档编号:4175992 上传时间:2023-04-08 格式:DOC 页数:20 大小:368.50KB
返回 下载 相关 举报
中考数学动态几何探究题分类练习汇总.doc_第1页
第1页 / 共20页
中考数学动态几何探究题分类练习汇总.doc_第2页
第2页 / 共20页
中考数学动态几何探究题分类练习汇总.doc_第3页
第3页 / 共20页
中考数学动态几何探究题分类练习汇总.doc_第4页
第4页 / 共20页
中考数学动态几何探究题分类练习汇总.doc_第5页
第5页 / 共20页
点击查看更多>>
资源描述

《中考数学动态几何探究题分类练习汇总.doc》由会员分享,可在线阅读,更多相关《中考数学动态几何探究题分类练习汇总.doc(20页珍藏版)》请在三一办公上搜索。

1、最新中考数学动态几何探究题分类练习汇总【题型特征】以几何知识为主体的综合题,简称几何综合题,主要研究图形中点与线之间的位置关系、数量关系,以及特定图形的判定和性质.一般以相似为中心,以圆为重点,常常是圆与三角形、四边形、相似三角形、锐角三角函数等知识的综合运用.【解题策略】解答几何综合题应注意:(1)注意观察、分析图形,把复杂的图形分解成几个基本图形,通过添加辅助线补全或构造基本图形.(2)掌握常规的证题方法和思路;(3)运用转化的思想解决几何证明问题,运用方程的思想解决几何计算问题.还要灵活运用其他的数学思想方法等.【小结】几何计算型综合问题,是以计算为主线综合各种几何知识的问题.这类问题的

2、主要特点是包含知识点多、覆盖面广、逻辑关系复杂、解法灵活.解题时必须在充分利用几何图形的性质及题设的基础上挖掘几何图形中隐含的数量关系和位置关系,在复杂的“背景”下辨认、分解基本图形,或通过添加辅助线补全或构造基本图形,并善于联想所学知识,突破思维障碍,合理运用方程等各种数学思想才能解决.【提醒】几何论证型综合题以知识上的综合性引人注目.值得一提的是,在近年各地的中考试题中,几何论证型综合题的难度普遍下降,出现了一大批探索性试题,根据新课标的要求,减少几何中推理论证的难度,加强探索性训练,将成为几何论证型综合题命题的新趋势.为了复习方便,我们将几何综合题分为:以三角形为背景的综合题;以四边形为

3、背景的综合题;以圆为背景的综合题.类型1操作探究题1在RtABC中,C90,RtABC绕点A顺时针旋转到RtADE的位置,点E在斜边AB上,连接BD,过点D作DFAC于点F.(1)如图1,若点F与点A重合,求证:ACBC;(2)若DAFDBA.如图2,当点F在线段CA的延长线上时,判断线段AF与线段BE的数量关系,并说明理由;当点F在线段CA上时,设BEx,请用含x的代数式表示线段AF.解:(1)证明:由旋转得,BACBAD,DFAC,CAD90.BACBAD45.ACB90,ABC45.ACBC.(2)AFBE.理由:由旋转得ADAB,ABDADB.DAFABD,DAFADB.AFBD.BA

4、CABD.ABDFAD,由旋转得BACBAD.FADBACBAD1/318060.由旋转得,ABAD.ABD是等边三角形ADBD.在AFD和BED中:1.F=.BED=90;2.ADBD; 3.FADEBD,AFDBED(AAS)AFBE.如图由旋转得BACBAD.ABDFADBACBAD2BAD,由旋转得ADAB,ABDADB2BAD.BADABDADB180,BAD2BAD2BAD180.BAD36.设BDa,作BG平分ABD,BADGBD36.AGBGBDa.DGADAGADBGADBD.BDGADB,BDGADB.BD/ADDG/DB.BD/AD(ADBD)/BDAD/BD(1+根号5

5、)/2。FADEBD,AFDBED,AFDBED.BD/ADBE/AF.AFBD/ADBE(1+根号5)/2*x.2如图1,点O是正方形ABCD两对角线的交点,分别延长OD到点G,OC到点E,使OG2OD,OE2OC,然后以OG,OE为邻边作正方形OEFG,连接AG,DE.(1)求证:DEAG;(2)正方形ABCD固定,将正方形OEFG绕点O逆时针旋转角(0360)得到正方形OEFG,如图2.在旋转过程中,当OAG是直角时,求的度数;若正方形ABCD的边长为1,在旋转过程中,求AF长的最大值和此时的度数,直接写出结果不必说明理由解:(1)证明:延长ED交AG于点H,点O是正方形ABCD两对角线

6、的交点,OAOD,OAOD.在AOG和DOE中,1.OAOD;2.AOGDOE90;3.OGOEAOGDOE.AGODEO.AGOGAO90,GAODEO90.AHE90,即DEAG.(2)在旋转过程中,OAG成为直角有两种情况:()由0增大到90过程中,当OAG90时,OAOD1/2*OG1/2*OG,在RtOAG中,sinAGOOA/OG1/2AGO30.OAOD,OAAG,ODAG.DOGAGO30,即30.()由90增大到180过程中,当OAG90时,同理可求BOG30,18030150.综上所述,当OAG90时,30或150.AF的最大值为2分子根号22,此时315.提示:如图当旋转

7、到A,O,F在一条直线上时,AF的长最大,正方形ABCD的边长为1,OAODOCOB2分子根号2.OG2OD,OGOG.OF2.AFAOOF2分子根号22.COE45,此时315.3如图,矩形ABCD中,AB4,AD3,M是边CD上一点,将ADM沿直线AM对折,得到ANM.(1)当AN平分MAB时,求DM的长;(2)连接BN,当DM1时,求ABN的面积;(3)当射线BN交线段CD于点F时,求DF的最大值解:(1)由折叠可知ANMADM,MANDAM.AN平分MAB,MANNAB.DAMMANNAB.四边形ABCD是矩形,DAB90.DAM30.DMADtanDAM33分子根号3根号3。(2)如

8、图1,延长MN交AB延长线于点Q.四边形ABCD是矩形,ABDC.DMAMAQ.由折叠可知ANMADM,DMAAMQ,ANAD3,MNMD1.MAQAMQ.MQAQ.设NQx,则AQMQ1x.在RtANQ中,AQ2AN平方NQ平方,(x1)平方3的平方x的平方.解得x4.NQ4,AQ5.AB4,AQ5,SNAB4/5*S,NAQ4/51/2ANNQ24/5.(3)如图2,过点A作AHBF于点H,则ABHBFC,BH/AHCF/BC.AHAN3,AB4,当点N,H重合(即AHAN)时,DF最大(AH最大,BH最小,CF最小,DF最大)此时M,F重合,B,N,M三点共线,ABHBFC(如图3),D

9、F的最大值为4根号7图1类型2动态探究题4(2016自贡)已知矩形ABCD的一条边AD8,将矩形ABCD折叠,使得顶点B落在CD边上的P点处(1)如图1,已知折痕与边BC交于点O,连接AP,OP,OA.若OCP与PDA的面积比为14,求边CD的长;(2)如图2,在(1)的条件下,擦去折痕AO,线段OP,连接BP.动点M在线段AP上(点M与点P,A不重合),动点N在线段AB的延长线上,且BNPM,连接MN交PB于点F,作MEBP于点E.试问当动点M,N在移动的过程中,线段EF的长度是否发生变化?若变化,说明变化规律若不变,求出线段EF的长度解:(1)四边形ABCD是矩形,CD90.APDDAP9

10、0.由折叠可得APOB90,APDCPO90.CPODAP.又DC,OCPPDA.OCP与PDA的面积比为14,设OPx,则CO8x.在RtPCO中,C90,由勾股定理得,解得x5.ABAP2OP10.CD10.(2)过点M作MQAN,交PB于点Q.APAB,MQAN,APBABPMQP.MPMQ.BNPM,BNQM.MPMQ,MEPQ,EQ0.5PQ.MQAN,QMFBNF.在MFQ和NFB中,1.QFMNFB;2.QMFBNF;3.MQBNMFQNFB(AAS)QFBF0.5QB.EFEQQF0.5PQ0.5QB0.5PB.由(1)中的结论可得PC4,BC8,C90,在(1)的条件下,当点

11、M,N在移动过程中,线段EF的长度不变,它的长度为2*根号5.5如图,在直角坐标系xOy中,矩形OABC的顶点A,C分别在x轴和y轴正半轴上,点B的坐标是(5,2),点P是CB边上一动点(不与点C,B重合),连接OP,AP,过点O作射线OE交AP的延长线于点E,交CB边于点M,且AOPCOM,令CPx,MPy.(1)当x为何值时,OPAP?(2)求y与x的函数关系式,并写出x的取值范围;(3)在点P的运动过程中,是否存在x,使OCM的面积与ABP的面积之和等于EMP的面积若存在,请求x的值;若不存在,请说明理由解:(1)由题意知OABC5,ABOC2,BOCM90,BCOA.OPAP,OPCA

12、PBAPBPAB90.OPCPAB.OPCPAB.解得x14,x21(不合题意,舍去)当x4时,OPAP.(2)BCOA,CPOAOP.AOPCOM,COMCPO.OCMPCO,OCMPCO.yx4/x(2x5)(3)存在x符合题意过点E作EDOA于点D,交MP于点F,则DFAB2.OCM与ABP面积之和等于EMP的面积,SEOAS矩形OABC251/25ED.ED4,EF2.PMOA,EMPEOA.解得y5/2.6如图1,矩形ABCD的两条边在坐标轴上,点D与坐标原点O重合,且AD8,AB6.如图2,矩形ABCD沿OB方向以每秒1个单位长度的速度运动,同时点P从A点出发也以每秒1个单位长度的

13、速度沿矩形ABCD的边AB经过点B向点C运动,当点P到达点C时,矩形ABCD和点P同时停止运动,设点P的运动时间为t秒(1)当t5时,请直接写出点D,点P的坐标;(2)当点P在线段AB或线段BC上运动时,求出PBD的面积S关于t的函数关系式,并写出相应t的取值范围;(3)点P在线段AB或线段BC上运动时,作PEx轴,垂足为点E,当PEO与BCD相似时,求出相应的t值解:(1)D(4,3),P(12,8)(2)当点P在边AB上时,BP6t.S0.5BPAD0.5(6t)84t24.当点P在边BC上时,BPt6.S0.5BPAB0.5(t6)63t18.类型3类比探究题7如图1,在正方形ABCD中

14、,P是对角线BD上的一点,点E在AD的延长线上,且PAPE,PE交CD于点F.(1)求证:PCPE;(2)求CPE的度数;(3)如图2,把正方形ABCD改为菱形ABCD,其他条件不变,当ABC120时,连接CE,试探究线段AP与线段CE的数量关系,并说明理由解:(1)证明:在正方形ABCD中,ABBC,ABPCBP45,在ABP和CBP中,1.AB=BC;2.PBPB;3.ABPCBPABPCBP(SAS)PAPC.又PAPE,PCPE.(2)由(1)知,ABPCBP,BAPBCP.DAPDCP.PAPE,DAPE.DCPE.CFPEFD(对顶角相等),180PFCPCF180DFEE,即CP

15、FEDF90.(3)在菱形ABCD中,ABBC,ABPCBP60,在ABP和CBP中,1.AB=BC;2.PBPB;3.ABPCBPABPCBP(SAS)PAPC,BAPBCP.PAPE,PCPE.DAPDCP.PAPE,DAPAEP.DCPAEP.CFPEFD(对顶角相等),180PFCPCF180DFEAEP,即CPFEDF180ADC18012060.EPC是等边三角形PCCE.APCE.8已知AC,EC分别为四边形ABCD和EFCG的对角线,点E在ABC内,CAECBE90.(1)如图1,当四边形ABCD和EFCG均为正方形时,连接BF.求证:CAECBF;若BE1,AE2,求CE的长

16、;(2)如图2,当四边形ABCD和EFCG均为矩形,且AB/BCEF/FCk时,若BE1,AE2,CE3,求k的值;(3)如图3,当四边形ABCD和EFCG均为菱形,且DABGEF45时,设BEm,AEn,CEp,试探究m,n,p三者之间满足的等量关系(直接写出结果,不必写出解答过程)解:(1)证明:四边形ABCD和EFCG均为正方形,ACB45,ECF45.ACBECBECFECB,即ACEBCF.CAECBF.CAECBF,CAECBF,AE/BF根号2.BF根号2.又CAECBE90,CBFCBE90,即EBF90.解得CE根号6.(2)连接BF,AB/BCEF/FCk,CFECBA,C

17、FECBA.ECFACB,CE/CFAC/BC.ACEBCF.ACEBCF.CAECBF.CAECBE90,CBFCBE90,题型2与圆有关的几何综合题9如图,在RtABC中,ABC90,以CB为半径作C,交AC于点D,交AC的延长线于点E,连接ED,BE.(1)求证:ABDAEB;(2)当BC(AB)3(4)时,求tanE;(3)在(2)的条件下,作BAC的平分线,与BE交于点F,若AF2,求C的半径解:(1)证明:ABC90,ABD90DBC.DE是直径,DBE90.E90BDE.BCCD,DBCBDE.ABDE.BADDAB,ABDAEB.10如图,在RtABC中,ABC90,AC的垂直

18、平分线分别与AC,BC及AB的延长线相交于点D,E,F.O是BEF的外接圆,EBF的平分线交EF于点G,交O于点H,连接BD,FH.(1)试判断BD与O的位置关系,并说明理由;(2)当ABBE1时,求O的面积;(3)在(2)的条件下,求HGHB的值解:(1)直线BD与O相切理由:连接OB.BD是RtABC斜边上的中线,DBDC.DBCC.OBOE,OBEOEB.又OEBCED,OBECED.DFAC,CDE90.CCED90.DBCOBE90.BD与O相切(2)连接AE.在RtABE中,ABBE1,AE根号2.DF垂直平分AC,CEAE根号2.BC1根号2.CCAB90,DFACAB90,AC

19、BDFA.又CBAFBE90,ABBE,CABFEB.(3)ABBE,ABE90,AEB45.EAEC,C22.5.HBEGCED9022.567.5.BH平分CBF,EBGHBF45.BGEBFH67.5.11如图,在ACE中,CACE,CAE30,O经过点C,且圆的直径AB在线段AE上(1)试说明CE是O的切线;(2)若ACE中AE边上的高为h,试用含h的代数式表示O的直径AB;(3)设点D是线段AC上任意一点(不含端点),连接OD,当1/2CDOD的最小值为6时,求O的直径AB的长解:(1)证明:连接OC.CACE,CAE30,ECAE30,COE2A60.OCE90.CE是O的切线12

20、如图,已知AB是O的直径,BP是O的弦,弦CDAB于点F,交BP于点G,E在CD的反向延长线上,EPEG,(1)求证:直线EP为O的切线;(2)点P在劣弧AC上运动,其他条件不变,若BG2BFBO.试证明BGPG;(3)在满足(2)的条件下,已知O的半径为3,sinB根号3/3.求弦CD的长解:(1)证明:连接OP.EPEG,EGPEGP.又EGPBGF,EPGBGF.OPOB,OPBOBP.CDAB,BGFOBP90.EPGOPB90,即EPO90.直线EP为O的切线(2)证明:连接OG,AP.BG2BFBO,BG/BOBF/BG又GBFOBG,BFGBGO.BGFBOG,BGOBFG90.APBOGB90,OGAP.又AOBO,BGPG.13如图,在AOB中,AOB为直角,OA6,OB8,半径为2的动圆圆心Q从点O出发,沿着OA方向以1个单位长度/秒的速度匀速运动,同时动点P从点A出发,沿着AB方向也以1个单位长度/秒的速度匀速运动,设运动时间为t秒(0t5)以P为圆心,PA长为半径的P与AB,OA的交点分别为C,D,连接CD,QC.(1)当t为何值时,点Q与点D重合?(2)当Q经过点A时,求P被OB截得的弦长;(3)若P与线段QC只有一个公共点,求t的取值范围

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 生活休闲 > 在线阅读


备案号:宁ICP备20000045号-2

经营许可证:宁B2-20210002

宁公网安备 64010402000987号