中国近530干湿变化及其持续性特征研究.doc

上传人:文库蛋蛋多 文档编号:4179347 上传时间:2023-04-09 格式:DOC 页数:2 大小:24.50KB
返回 下载 相关 举报
中国近530干湿变化及其持续性特征研究.doc_第1页
第1页 / 共2页
中国近530干湿变化及其持续性特征研究.doc_第2页
第2页 / 共2页
亲,该文档总共2页,全部预览完了,如果喜欢就下载吧!
资源描述

《中国近530干湿变化及其持续性特征研究.doc》由会员分享,可在线阅读,更多相关《中国近530干湿变化及其持续性特征研究.doc(2页珍藏版)》请在三一办公上搜索。

1、中国近530年干湿变化及其持续性特征研究龚志强1, 2 支蓉1 封国林2, 3 张强21. 兰州大学大气科学学院,兰州 7300002. 国家气候中心,中国气象局气候研究开放实验室,北京 1000813. 中国科学院大气物理研究所东亚区域气候-环境重点实验室,北京 100029摘 要采用中国530年旱涝指数序列,并将其划分为华北和西北东部地区(区)、长江流域地区(区)以及中南和东南沿海地区(区)3个区域。应用功率谱、滤波方法、BG算法等研究旱涝指数序列各相对平稳均值段之间的干湿转化特征。结果表明,近130年的干旱时段和历史上的干旱或偏旱时段相比,区干湿转化频率有所加快;区干湿转化频率没有太大变

2、化;区干湿转化频率有所降低。并且重大干湿转折时期大多对应突变点比较集中,即这一时期气候态不稳定,容易发生突变或各种极端气候事件。结合小波系数的周期分析结果发现,区从1920年左右开始的干旱,在经历了20世纪70年代末以来的严重干旱以后,有可能在21世纪再持续50到70年,其后再一次发生由干旱向湿润的转型; 区则有可能在接下来的几十年中持续湿润期相对集中的情况。此外,区干湿变化的特征与北半球的气候变化有一定的对应关系;区的干湿变化与当地温度变化具有较好的正相关;区和区干湿变化与温度变化的联系较区差一些;太平洋年代际涛动可能对3个区域的干湿转化均有不同程度的影响。在此基础上,定义旱(涝)尺度因子,

3、可以定量描述旱涝持续性的区域特征;滑动计算旱(涝)尺度因子,可以检测哪一时段对应有旱涝群发性事件及重大干湿期的转折。关键词 旱涝指数,突变,温度,太平洋年代际涛动,旱涝尺度因子,持续性资助课题:国家自然科学基金(40675044), 国家重点发展基础研究项目(2006CB400503), 国家科技支撑计划(2007BAC03A01)和“气候变化的检测和预估技术研究”。作者简介:龚志强,主要从事气候变化、极端事件的检测与分析和气候系统复杂网络等方面的研究。Email: qgzq0929.2007-08-06收稿,2008-01-07改回.中图法分类号 P467Dry-Wet Changes an

4、d its Durative Characteristics during the Past 530 YearsGONG Zhiqiang1, 2 ZHI Rong1 FENG Guolin2, 3 ZHANG Qiang21. Atmospheric Science College, Lanzhou University, Lanzhou 730000, China2. Laboratory for Climate Studies, National Climate Research Center CMA, Beijing 100081, China3. Key Laboratory of

5、Regional Climate-Environment for Temperate East Asia, Institute of Atmospheric Physics, CAS, Beijing 100029, China AbstractBased on a dry-wet (DW) index series of last 531 years at 48 stations, we divided the study area into three regions: Area covers North China and the east of Northwest China; Are

6、a covers most of the Yangtze River basin; Area covers South China and the Southeast coastal region. The evolutional characteristics of the mean value segments of the DW index series for each area were studied using the power spectrum analysis, the filtering method, and the BernaolaGalvan algorithm.

7、The results show that the frequency of DW transition in the drought-intensive period of the last 130 years, has increased in Area , not obviously changed in Area , but decreased in Area , in comparison with the other two earlier historical droughtintensive periods. In the drynesswetness transition p

8、eriods, abrupt change points were relatively concentrated, i.e., the climate was unstable, and various climatic extreme events were likely to occur. Based on the period analysis results of the DW index, we found that the current dry epoch started at about 1920 in Area with severe droughts recorded f

9、rom the late 1970s to the early 1980s, might last for about 50-70 years in this century, and then a DW shift will take place; while the current wet epoch in Area may also continue in the next several decades. Comparing DW variations of Area , , and with the Northern Hemispheric tree ring data, and t

10、he Pacific decadal oscillation index, we also found that DW variations in the three areas were to some extent associated with Northern Hemispheric climate change. DW variations in Area were positively correlated with temperature changes, but the correlations in Area and were relatively worse; and th

11、e Pacific decadal oscillations might to different extent impact the DW shift in the three areas. It was found from the above analyses that the occurrence probability of various categories of dryness duration index is an exponential function of running window length. Dryness/wetness scale factor was

12、defined as the reciprocal of the characteristic value of the exponential distribution, and its calculations show a bandlike fluctuation distribution wherein the value of the factor increases northwards, with a mean value 1.87/1.66 in Area , 1.62/1.54 in Area , and 1.82/1.71 in Area . The dryness/wet

13、ness scale factor is able to quantitatively describe the persistent character of regional dryness/wetness, therefore it can be used to effectively detect the clustering of dry/wet events and the abrupt change of DW index.Key words Dry -wet index, Abrupt change, Temperature, PDO, Dry-wet scale factor, Persistency

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 办公文档 > 其他范文


备案号:宁ICP备20000045号-2

经营许可证:宁B2-20210002

宁公网安备 64010402000987号