自动控制理论实验指导书.doc

上传人:laozhun 文档编号:4193294 上传时间:2023-04-09 格式:DOC 页数:69 大小:4.91MB
返回 下载 相关 举报
自动控制理论实验指导书.doc_第1页
第1页 / 共69页
自动控制理论实验指导书.doc_第2页
第2页 / 共69页
自动控制理论实验指导书.doc_第3页
第3页 / 共69页
自动控制理论实验指导书.doc_第4页
第4页 / 共69页
自动控制理论实验指导书.doc_第5页
第5页 / 共69页
点击查看更多>>
资源描述

《自动控制理论实验指导书.doc》由会员分享,可在线阅读,更多相关《自动控制理论实验指导书.doc(69页珍藏版)》请在三一办公上搜索。

1、目 录第三章 自动控制原理实验33.1 线性系统的时域分析33.1.1 典型环节的模拟研究33.1.2 二阶系统瞬态响应和稳定性83.1.3 三阶系统的瞬态响应和稳定性93.2 线性控制系统的频域分析113.2.1 一阶惯性环节的频率特性曲线113.2.2 二阶闭环系统的频率特性曲线123.2.3 二阶开环系统的频率特性曲线143.2.4频率特性的时域分析163.3 线性系统的校正与状态反馈173.3.1 频域法串联超前校正173.3.2 频域法串联迟后校正203.3.3 时域法串联比例微分校正233.3.4时域法比例反馈校正263.3.5时域法微分反馈校正293.3.6 线性系统的状态反馈及

2、极点配置313.4 非线性系统的相平面分析333.4.1 典型非线性环节333.4.2 二阶非线性控制系统363.4.3 三阶非线性控制系统393.5 采样控制系统分析423.6 模拟直流电机闭环调速实验443.7 模拟温度闭环控制实验46第四章 计算机控制技术实验484.1 数/模转换实验484.2 模/数转换实验484.3 采样与保持494.3.1 采样实验494.3.2 采样/保持器实验494.4 平滑与数字滤波实验514.4.1 微分与平滑514.4.2 数字滤波524.5 数字PID控制实验544.5.1 标准PID控制算法544.5.2 积分分离PID控制算法564.5.3 非线性

3、PID控制算法564.5.4 积分分离-砰砰复式PID控制算法574.6 最少拍控制系统584.6.1 最少拍有纹波系统584.6.2 最少拍无纹波设计594.7 大林算法604.8 多变量解耦控制62第五章 控制系统实验665.1 直流电机闭环调速实验665.2 温度闭环控制实验675.3 步进电机调速实验68第六章 综合控制实验696.1模拟/数字混合温度闭环控制实验69第三章 自动控制原理实验3.1 线性系统的时域分析3.1.1 典型环节的模拟研究一. 实验要求1 了解和掌握各典型环节模拟电路的构成方法、传递函数表达式及输出时域函数表达式2 观察和分析各典型环节的阶跃响应曲线,了解各项电

4、路参数对典型环节动态特性的影响二典型环节的方块图及传递函数典型环节名称方 块 图 传递函数比例(P)积分(I)比例积分(PI)比例微分(PD)惯性环节(T)比例积分微分(PID) 三实验内容及步骤在实验中欲观测实验结果时,可用普通示波器,也可选用本实验机配套的虚拟示波器。如果选用虚拟示波器,只要运行LABACT程序,选择自动控制菜单下的线性系统的时域分析下的典型环节的模拟研究中的相应实验项目,就会弹出虚拟示波器的界面,点击开始即可使用本实验机配套的虚拟示波器(B3)单元的CH1测孔测量波形。具体用法参见用户手册中的示波器部分。1)观察比例环节的阶跃响应曲线典型比例环节模拟电路如图3-1-1所示

5、。图3-1-1 典型比例环节模拟电路实验步骤: 注:S ST不能用“短路套”短接!(1)用信号发生器(B1)的阶跃信号输出 和幅度控制电位器构造输入信号(Ui): B1单元中电位器的左边K3开关拨下(GND),右边K4开关拨下(0/+5V阶跃)。阶跃信号输出(B1的Y测孔)调整为4V(调节方法:按下信号发生器(B1)阶跃信号按钮,L9灯亮,调节电位器,用万用表测量Y测孔)。(2)构造模拟电路:按图3-1-1安置短路套及测孔联线,表如下。(a)安置短路套 (b)测孔联线模块号跨接座号1A1S4,S7(电阻R1=100K)2A6S2,S61信号输入(Ui)B1(Y) A1(H1)2运放级联A1(O

6、UTA6(H1)(3)运行、观察、记录:(注:CH1选1档。时间量程选1档) 打开虚拟示波器的界面,点击开始,按下信号发生器(B1)阶跃信号按钮(0+4V阶跃),用示波器观测A6输出端(Uo)的实际响应曲线Uo(t)。 改变比例系数(改变运算模拟单元A1的反馈电阻R1),重新观测结果,填入实验报告。 2)观察惯性环节的阶跃响应曲线典型惯性环节模拟电路如图3-1-4所示。图3-1-4 典型惯性环节模拟电路实验步骤: 注:S ST不能用“短路套”短接!(1)用信号发生器(B1)的阶跃信号输出 和幅度控制电位器构造输入信号(Ui): B1单元中电位器的左边K3开关拨下(GND),右边K4开关拨下(0

7、/+5V阶跃)。阶跃信号输出(B1的Y测孔)调整为4V(调节方法:按下信号发生器(B1)阶跃信号按钮,L9灯亮,调节电位器,用万用表测量Y测孔)。(2)构造模拟电路:按图3-1-4安置短路套及测孔联线,表如下。(a)安置短路套 (b)测孔联线模块号跨接座号1A1S4,S8,S10(电容C=1uf)2A6S2,S61信号输入(Ui)B1(Y) A1(H1)2运放级联A1(OUT)A6(H1)(3)运行、观察、记录:(注:CH1选1档。时间量程选1档) 打开虚拟示波器的界面,点击开始,用示波器观测A6输出端(Uo),按下信号发生器(B1)阶跃信号按钮时(0+4V阶跃),等待完整波形出来后,移动虚拟

8、示波器横游标到4V(输入)0.632处,得到与惯性的曲线的交点,再移动虚拟示波器两根纵游标,从阶跃开始到曲线的交点,量得惯性环节模拟电路时间常数T。A6输出端(Uo)的实际响应曲线Uo(t)。 改变时间常数及比例系数(分别改变运算模拟单元A1的反馈电阻R1和反馈电容C),重新观测结果,填入实验报告。3)观察积分环节的阶跃响应曲线 典型积分环节模拟电路如图3-1-5所示。图3-1-5 典型积分环节模拟电路 实验步骤:注:S ST用短路套短接!(1)为了避免积分饱和,将函数发生器(B5)所产生的周期性矩形波信号(OUT),代替信号发生器(B1)中的人工阶跃输出作为系统的信号输入(Ui);该信号为零

9、输出时,将自动对模拟电路锁零。 在显示与功能选择(D1)单元中,通过波形选择按键选中矩形波(矩形波指示灯亮)。 量程选择开关S2置下档,调节“设定电位器1”,使之矩形波宽度1秒左右(D1单元左显示)。 调节B5单元的“矩形波调幅”电位器使矩形波输出电压= 1V(D1单元右显示)。(2)构造模拟电路:按图3-1-5安置短路套及测孔联线,表如下。(a)安置短路套 (b)测孔联线1信号输入(Ui)B5(OUT)A1(H1)2运放级联A1(OUT)A6(H1)模块号跨接座号1A1S4,S10(电容C=1uf)2A6S2,S63B5S-ST(3)运行、观察、记录:(注:CH1选1档。时间量程选1档) 打

10、开虚拟示波器的界面,点击开始,用示波器观测A6输出端(Uo),调节调宽电位器使宽度从0.3秒开始调到积分输出在虚拟示波器顶端(即积分输出电压接近+5V)为止。等待完整波形出来后,移动虚拟示波器横游标到0V处,再移动另一根横游标到V=1V(与输入相等)处,得到与积分的曲线的交点,再移动虚拟示波器两根纵游标,从阶跃开始到曲线的交点,量得积分环节模拟电路时间常数Ti。A6输出端(Uo)的实际响应曲线Uo(t)。 改变时间常数(分别改变运算模拟单元A1的输入电阻Ro和反馈电容C),重新观测结果,填入实验报告。(可将运算模拟单元A1的输入电阻的短路套(S4)去掉,将可变元件库(A11)中的可变电阻跨接到

11、A1单元的H1和IN测孔上,调整可变电阻继续实验。)4)观察比例积分环节的阶跃响应曲线 典型比例积分环节模拟电路如图3-1-8所示.。图3-1-8 典型比例积分环节模拟电路实验步骤:注:S ST用短路套短接!(1)为了避免积分饱和,将函数发生器(B5)所产生的周期性矩形波信号(OUT),代替信号发生器(B1)中的人工阶跃输出作为系统的信号输入(Ui);该信号为零输出时将自动对模拟电路锁零。 在显示与功能选择(D1)单元中,通过波形选择按键选中矩形波(矩形波指示灯亮)。 量程选择开关S2置下档,调节“设定电位器1”,使之矩形波宽度1秒秒左右(D1单元左显示)。 调节B5单元的“矩形波调幅”电位器

12、使矩形波输出电压 = 1V(D1单元右显示)。(2)构造模拟电路:按图3-1-8安置短路套及测孔联线,表如下。(a)安置短路套 (b)测孔联线1信号输入(Ui)B5(OUT A5(H1)2运放级联A5(OUT)A6(H1)模块号跨接座号1A5S4,S8,S9(电容C=2uf)2A6S2,S63B5S-ST(3)运行、观察、记录:(注:CH1选1档。时间量程调选1档) 打开虚拟示波器的单迹界面,点击开始,用示波器观测A6输出端(Uo)。 待完整波形出来后,移动虚拟示波器横游标到1V(与输入相等)处,再移动另一根横游标到V=Kp输入电压处,得到与积分曲线的两个交点。 再分别移动示波器两根纵游标到积

13、分曲线的两个交点,量得积分环节模拟电路时间常数Ti。 改变时间常数及比例系数(分别改变运算模拟单元A5的输入电阻Ro和反馈电容C),重新观测结果,填入实验报告。 5)观察比例微分环节的阶跃响应曲线典型比例微分环节模拟电路如图3-1-9所示。图3-1-9 典型比例微分环节模拟电路实验步骤:注:S ST用短路套短接!(1)将函数发生器(B5)单元的矩形波输出作为系统输入R。(连续的正输出宽度足够大的阶跃信号) 在显示与功能选择(D1)单元中,通过波形选择按键选中矩形波(矩形波指示灯亮)。 量程选择开关S2置下档,调节“设定电位器1”,使之矩形波宽度1秒左右(D1单元左显示)。 调节B5单元的“矩形

14、波调幅”电位器使矩形波输出电压 = 0.5V(D1单元右显示)。(2)构造模拟电路:按图3-1-9安置短路套及测孔联线,表如下。(a)安置短路套 (b)测孔联线模块号跨接座号1A4S4,S92A6S2,S63B5S-ST1信号输入(Ui)B5(OUT)A4(H1)2运放级联A4(OUT)A6(H1)(3)运行、观察、记录: CH1选1档。时间量程选4档。 打开虚拟示波器的界面,点击开始,用示波器观测系统的A6输出端(Uo),响应曲线见图3-1-10。等待完整波形出来后,把最高端电压(4.77V)减去稳态输出电压(0.5V),然后乘以0.632,得到V=2.7V。 移动虚拟示波器两根横游标,从最

15、高端开始到V=2.7V处为止,得到与微分的指数曲线的交点,再移动虚拟示波器两根纵游标,从阶跃开始到曲线的交点,量得t=0.048S。 已知KD=10,则图3-1-9的比例微分环节模拟电路微分时间常数:6)观察PID(比例积分微分)环节的响应曲线PID(比例积分微分)环节模拟电路如图3-1-11所示。图3-1-11 PID(比例积分微分)环节模拟电路实验步骤:注:S ST用短路套短接!(1)为了避免积分饱和,将函数发生器(B5)所产生的周期性矩形波信号(OUT),代替信号发生器(B1)中的人工阶跃输出作为系统的信号输入(Ui);该信号为零输出时将自动对模拟电路锁零。 在显示与功能选择(D1)单元

16、中,通过波形选择按键选中矩形波(矩形波指示灯亮)。 量程选择开关S2置下档,调节“设定电位器1”,使之矩形波宽度0.1秒左右(D1单元左显示)。 调节B5单元的“矩形波调幅”电位器使矩形波输出电压= 0.2V(D1单元右显示)。(2)构造模拟电路:按图3-1-11安置短路套及测孔联线,表如下。(a)安置短路套 (b)测孔联线模块号跨接座号1A2当电阻R1=10K时S1,S72A6S2,S63B5S-ST1信号输入(Ui)B5(OUT)A2(H1)2运放级联A2(OUT)A6(H1)(3)运行、观察、记录: (CH1选1档。时间量程选4档) 打开虚拟示波器的单迹界面,点击开始,用示波器观测A6输

17、出端(Uo)。 等待完整波形出来后,移动虚拟示波器两根横游标使之V=Kp输入电压,得到与积分的曲线的两个交点。 再分别移动示波器两根纵游标到积分的曲线的两个交点,量得积分环节模拟电路时间常数Ti。注意:该实验由于微分的时间太短,较难捕捉到,必须把波形扩展到最大(/ 4档),但有时仍无法显示微分信号。定量观察就更难了,因此,建议用一般的示波器观察。 改变时间常数及比例系数(分别改变运算模拟单元A2的输入电阻Ro和反馈电阻R1),重新观测结果,填入实验报告。 3.1.2 二阶系统瞬态响应和稳定性一实验要求1. 了解和掌握典型二阶系统模拟电路的构成方法及型二阶闭环系统的传递函数标准式。2. 研究型二

18、阶闭环系统的结构参数-无阻尼振荡频率n、阻尼比对过渡过程的影响。3. 掌握欠阻尼型二阶闭环系统在阶跃信号输入时的动态性能指标Mp、tp、ts的计算。4. 观察和分析型二阶闭环系统在欠阻尼,临界阻尼,过阻尼的瞬态响应曲线,及在阶跃信号输入时的动态性能指标Mp、tp、ts值,并与理论计算值作比对。二实验内容及步骤本实验用于观察和分析二阶系统瞬态响应和稳定性。开环传递函数: 闭环传递函数标准式: 自然频率(无阻尼振荡频率): ; 阻尼比: 超调量 : ; 峰值时间: 有二阶闭环系统模拟电路如图3-1-7所示。它由积分环节(A2)和惯性环节(A3)构成。图3-1-8 型二阶闭环系统模拟电路图3-1-8

19、的二阶系统模拟电路的各环节参数及系统的传递函数:积分环节(A2单元)的积分时间常数Ti=R1*C1=1S 惯性环节(A3单元)的惯性时间常数 T=R2*C2=0.1S该闭环系统在A3单元中改变输入电阻R来调整增益K,R分别设定为 4k、40k、100k 。当R=100k, K=1 =1.58 1 为过阻尼响应, 当R=40k, K=2.5 =1 为临界阻尼响应, 当R=4k, K=25 =0.316 01 为欠阻尼响应。 欠阻尼二阶闭环系统在阶跃信号输入时的动态指标Mp、tp、ts的计算:( K=25、=0.316、=15.8)型二阶闭环系统模拟电路见图3-1-8。该环节在A3单元中改变输入电

20、阻R来调整衰减时间。实验步骤: 注:S ST不能用“短路套”短接!(1)用信号发生器(B1)的阶跃信号输出 和幅度控制电位器构造输入信号(Ui): B1单元中电位器的左边K3开关拨下(GND),右边K4开关拨下(0/+5V阶跃)。阶跃信号输出(B1的Y测孔)调整为2V(调节方法:按下信号发生器(B1)阶跃信号按钮,L9灯亮,调节电位器,用万用表测量Y测孔)。(2)构造模拟电路:按图3-1-8安置短路套及测孔联线,表如下。(a)安置短路套 (b)测孔联线模块号跨接座号1A1S4,S82A2S2,S10,S113A3S8,S104A6S2,S61信号输入r(t)B1(Y) A1(H1)2运放级联A

21、1(OUTA2(H1)3运放级联A2(OUTA3(H1)4负反馈A3(OUTA1(H2)5运放级联A3(OUTA6(H1)6跨接元件4K、40K、100K元件库A11中直读式可变电阻跨接到A3(H1)和(IN)之间(3)虚拟示波器(B3)的联接:示波器输入端CH1接到A6单元信号输出端OUT(C(t))。注:CH1选1档。(4)运行、观察、记录: 运行LABACT程序,选择自动控制菜单下的线性系统的时域分析下的二阶典型系统瞬态响应和稳定性实验项目,就会弹出虚拟示波器的界面,点击开始即可使用本实验机配套的虚拟示波器(B3)单元的CH1测孔测量波形。也可选用普通示波器观测实验结果。 分别将(A11

22、)中的直读式可变电阻调整到4K、40K、100K,按下B1按钮,用示波器观察在三种增益K下,A6输出端C(t)的系统阶跃响应。 改变积分时间常数Ti(惯性时间常数T=0.1,惯性环节增益K=25,R=4K,C2=1u),重新观测结果,记录超调量MP,峰值时间tp和调节时间ts,填入实验报告。(计算值实验前必须按公式计算出) 改变惯性时间常数 T(积分时间常数Ti=1,惯性环节增益K=25,R=4K,C1=2u)重新观测结果,记录超调量MP,峰值时间tp和调节时间ts,填入实验报告。(计算值实验前必须按公式计算出)3.1.3 三阶系统的瞬态响应和稳定性一实验要求1. 了解和掌握典型三阶系统模拟电

23、路的构成方法及型三阶系统的传递函数表达式。2. 熟悉劳斯(ROUTH)判据使用方法。3. 应用劳斯(ROUTH)判据,观察和分析型三阶系统在阶跃信号输入时,系统的稳定、临界稳定及不稳定三种瞬态响应。二实验内容及步骤本实验用于观察和分析三阶系统瞬态响应和稳定性。型三阶闭环系统模拟电路如图3-1-8所示。它由积分环节(A2)、惯性环节(A3和A5)构成。图3-1-11 型三阶闭环系统模拟电路图图3-1-11的型三阶闭环系统模拟电路的各环节参数及系统的传递函数:积分环节(A2单元)的积分时间常数Ti=R1*C1=1S, 惯性环节(A3单元)的惯性时间常数 T1=R3*C2=0.1S, K1=R3/R

24、2=1惯性环节(A5单元)的惯性时间常数 T2=R4*C3=0.5S,K2=R4/R=500k/R该系统在A5单元中改变输入电阻R来调整增益K,R分别为 30K、41.7K、100K 。闭环系统的特征方程为: (3-1-6)特征方程标准式: (3-1-7)由ROUTH 判据,得型三阶闭环系统模拟电路图见图3-1-11,分别将(A11)中的直读式可变电阻调整到30K、41.7K、100K,跨接到A5单元(H1)和(IN)之间,改变系统开环增益进行实验。实验步骤: 注:S ST不能用“短路套”短接!(1)用信号发生器(B1)的阶跃信号输出 和幅度控制电位器构造输入信号(Ui): B1单元中电位器的

25、左边K3开关拨下(GND),右边K4开关拨下(0/+5V阶跃)。阶跃信号输出(B1-2的Y测孔)调整为2V(调节方法:按下信号发生器(B1)阶跃信号按钮,L9灯亮,调节电位器,用万用表测量Y测孔)。(2)构造模拟电路:按图3-1-11安置短路套及测孔联线,表如下。(a)安置短路套 (b)测孔联线模块号跨接座号1A1S4,S82A2S2,S10,S113A3S4,S8,S104A5S7,S105A6S2,S61信号输入r(t)B1(Y) A1(H1)2运放级联A1(OUT)A2(H1)3运放级联A2(OUT)A3(H1)4运放级联A3(OUT)A5(H1)5运放级联A5(OUT)A6(H1)6负

26、反馈A6(OUT)A1(H2)7跨接元件30K、41.7K、100K元件库A11中直读式可变电阻跨接到A5(H1)和(IN)之间(3)虚拟示波器(B3)的联接:示波器输入端CH1接到A5单元信号输出端OUT(C(t))。注:CH1选X1档。(4)运行、观察、记录: 运行LABACT程序,选择自动控制菜单下的线性系统的时域分析下的三阶典型系统瞬态响应和稳定性实验项目,就会弹出虚拟示波器的界面,点击开始即可使用本实验机配套的虚拟示波器(B3)单元的CH1测孔测量波形。也可选用普通示波器观测实验结果。 分别将(A11)中的直读式可变电阻调整到30K、41.7K、100K,按下B1按钮,用示波器观察A

27、5单元信号输出端C(t)的系统阶跃响应。 改变时间常数(分别改变运算模拟单元A3和A5的反馈电容C2、C3),重新观测结果,填入实验报告。 3.2 线性控制系统的频域分析3.2.1 一阶惯性环节的频率特性曲线一实验要求了解和掌握对数幅频曲线和相频曲线(波德图)、幅相曲线(奈奎斯特图)的构造及绘制方法。二实验内容及步骤 本实验用于观察和分析一阶惯性环节的频率特性曲线。频域分析法是应用频率特性研究线性系统的一种经典方法。它以控制系统的频率特性作为数学模型,以波德图或其他图表作为分析工具,来研究和分析控制系统的动态性能与稳态性能。本实验将数/模转换器(B2)单元作为信号发生器,自动产生的超低频正弦信

28、号的频率从低到高变化(0.5Hz64Hz),OUT2输出施加于被测系统的输入端r(t),然后分别测量被测系统的输出信号的对数幅值和相位,数据经相关运算后在虚拟示波器中显示。惯性环节的频率特性测试电路见图3-2-1。图3-2-1 惯性环节的频率特性测试电路实验步骤: (1)将数/模转换器(B2)输出OUT2作为被测系统的输入。(2)构造模拟电路:按图3-2-1安置短路套及测孔联线,表如下。(a)安置短路套 (b)测孔联线模块号跨接座号1A1S2,S62A6S4,S7,S91信号输入B2(OUT2)A1(H1)2运放级联A1(OUT)A6(H1)3相位测量A6(OUT) A8(CIN1)4A8(C

29、OUT1) B4(A2)5B4(Q2) B8(IRQ6)6幅值测量A6(OUT) B7(IN6)(3)运行、观察、记录: 运行LABACT程序,选择自动控制菜单下的线性控制系统的频率响应分析-实验项目,选择一阶系统,就会弹出虚拟示波器的频率特性界面,点击开始,实验机将自动产生0.5Hz64Hz多个频率信号,测试被测系统的频率特性,等待将近十分钟,测试结束。 测试结束后,可点击界面下方的“频率特性”选择框中的任意一项进行切换,将显示被测系统的对数幅频、相频特性曲线(伯德图)和幅相曲线(奈奎斯特图),同时在界面上方将显示该系统用户点取的频率点的L、Im、Re等相关数据。点击停止后,将停止示波器运行

30、。 改变惯性环节开环增益:改变A6的输入电阻R=50K、100K、200K。C=1u,R2=50K(T=0.05)。改变惯性环节时间常数:改变A6的反馈电容C2=1u、2u、3u。R1=50K、R2=50K(K=1)注:本实验要求惯性环节开环增益不能大于1。3.2.2 二阶闭环系统的频率特性曲线一实验要求1 了解和掌握二阶闭环系统中的对数幅频特性和相频特性,实频特性和虚频特性的计算2 了解和掌握欠阻尼二阶闭环系统中的自然频率n、阻尼比对谐振频率r和谐振峰值L(r)的影响及r和L(r) 的计算。3 观察和分析欠阻尼二阶开环系统的谐振频率r、谐振峰值L(r),并与理论计算值作比对。二实验内容及步骤

31、本实验用于观察和分析二阶闭环系统的频率特性曲线。本实验以第3.1.2节二阶系统瞬态响应和稳定性中二阶闭环系统模拟电路为例,令积分时间常数为Ti,惯性时间常数为T,开环增益为K,可得: 自然频率: 阻尼比: (3-2-1)谐振频率: 谐振峰值: (3-2-2)频率特性测试电路如图3-2-2所示,其中惯性环节(A3单元)的R用元件库A7中可变电阻取代。图3-2-4 二阶闭环系统频率特性测试电路 积分环节(A2单元)的积分时间常数Ti=R1*C1=1S, 惯性环节(A3单元)的惯性时间常数 T=R3*C2=0.1S,开环增益K=R3/R。设开环增益K=25(R=4K),各环节参数代入式(3-2-1)

32、,得:n = 15.81 = 0.316;再代入式(3-2-2),得:谐振频率:r = 14.14 谐振峰值: 注1:根据本实验机的现况,要求构成被测二阶闭环系统的阻尼比必须满足,否则模/数转换器(B7元)将产生削顶。注2:实验机在测试频率特性时,实验开始后,实验机将按序自动产生0.5Hz16Hz等多种频率信号,当被测系统的输出时将停止测试。 实验步骤: (1)将数/模转换器(B2)输出OUT2作为被测系统的输入。(2)构造模拟电路:按图3-2-4安置短路套及测孔联线,表如下。(a)安置短路套 (b)测孔联线模块号跨接座号1A1S4,S82A2S2,S11,S123A3S8,S95A6S2,S

33、61信号输入B2(OUT2) A1(H1)2运放级联A1(OUT)A2(H1)3运放级联A3(OUT)A6(H1)4负反馈A3(OUT)A1(H2)6相位测量A6(OUT) A8(CIN1)7A8(COUT1) B4(A2)8B4(Q2) B8(IRQ6)9幅值测量A6(OUT) B7(IN4)10跨接元件(4K)元件库A11中可变电阻跨接到A2(OUT)和A3(IN)之间(3)运行、观察、记录: 将数/模转换器(B2)输出OUT2作为被测系统的输入,运行LABACT程序,在界面的自动控制菜单下的线性控制系统的频率响应分析-实验项目,选择二阶系统,就会弹出虚拟示波器的界面,点击开始,实验开始后

34、,实验机将自动产生0.5Hz16Hz等多种频率信号,等待将近十分钟,测试结束后,观察闭环对数幅频、相频曲线和幅相曲线。 测试结束后,可点击界面下方的“频率特性”选择框中的任意一项进行切换,将显示被测系统的闭环对数幅频、相频特性曲线(伯德图)和幅相曲线(奈奎斯特图)。图3-2-4的被测二阶系统的闭环对数幅频所示。 显示该系统用户点取的频率点的、L、Im、Re实验机在测试频率特性结束后,将提示用户用鼠标直接在幅频或相频特性曲线的界面上点击所需增加的频率点(为了教育上的方便,本实验机选取的频率值f,以0.1Hz为分辨率,例如所选择的信号频率f值为4.19Hz,则被认为4.1 Hz送入到被测对象的输入

35、端),实验机将会把鼠标点取的频率点的频率信号送入到被测对象的输入端,然后检测该频率的频率特性。检测完成后在界面上方显示该频率点的f、L、Im、Re相关数据,同时在曲线上打十字标记。如果增添的频率点足够多,则特性曲线将成为近似光滑的曲线。鼠标在界面上移动时,在界面的左下角将会同步显示鼠标位置所选取的角频率值及幅值或相位值。在(AedkLabACT两阶频率特性数据表)中将列出所有测试到的频率点的闭环L、Im、Re等相关数据测量。注:该数据表不能自动更新,只能用关闭后再打开的办法更新。 谐振频率和谐振峰值的测试:在闭环对数幅频曲线中用鼠标在曲线峰值处点击一下,待检测完成后就可以根据十字标记测得该系统

36、的谐振频率r ,谐振峰值L(r),见图3-2-5;实验结果可与式(3-2-9)的计算值进行比对。注:用户用鼠标只能在幅频或相频特性曲线的界面上点击所需增加的频率点,无法在幅相曲线的界面上点击所需增加的频率点。 改变惯性环节开环增益:改变运算模拟单元A3的输入电阻R=10K、4K、2K。Ti=1(C1=2u),T=0.1(C2=1u)( R減小(減小)。改变惯性环节时间常数:改变运算模拟单元A3的反馈电容C2=1u、2u、3u。Ti=1(C1=2u),K=25(R=4K),(C2增加 (減小))。改变积分环节时间常数:改变运算模拟单元A3的反馈电容C1=1u、2u。T=0.1(C2=1u),K=

37、25(R=4K) ,(C1減小(減小))。重新观测结果,界面上方将显示该系统用户点取的频率点的、L、Im、Re、谐振频率r ,谐振峰值L(r)等相关数据,填入实验报告。谐振频率r谐振峰值L(r)图3-2-5 被测二阶闭环系统的对数幅频曲线3.2.3 二阶开环系统的频率特性曲线一实验要求1研究表征系统稳定程度的相位裕度和幅值穿越频率对系统的影响。2了解和掌握二阶开环系统中的对数幅频特性和相频特性,实频特性 和虚频特性的计算。3了解和掌握欠阻尼二阶开环系统中的相位裕度和幅值穿越频率的计算。4观察和分析欠阻尼二阶开环系统波德图中的相位裕度和幅值穿越频率c,与计算值作比对。二实验内容及步骤本实验用于观

38、察和分析二阶开环系统的频率特性曲线。由于型系统含有一个积分环节,它在开环时响应曲线是发散的,因此欲获得其开环频率特性时,还是需构建成闭环系统,测试其闭环频率特性,然后通过公式换算,获得其开环频率特性。 计算欠阻尼二阶闭环系统中的幅值穿越频率c、相位裕度:幅值穿越频率: (3-2-3)相位裕度: (3-2-4)值越小,Mp%越大,振荡越厉害;值越大,Mp%小,调节时间ts越长,因此为使二阶闭环系统不致于振荡太厉害及调节时间太长,一般希望:3070 (3-2-5)本实验以第3.2.2节二阶闭环系统频率特性曲线为例,得: c =14.186 =34.93 本实验所构成的二阶系统符合式(3-2-5)要

39、求。被测系统模拟电路图的构成如图3-2-2所示。(同二阶闭环系统频率特性测试构成)本实验将数/模转换器(B2)单元作为信号发生器,自动产生的超低频正弦信号的频率从低到高变化(0.5Hz16Hz),OUT2输出施加于被测系统的输入端r(t),然后分别测量被测系统的输出信号的开环对数幅值和相位,数据经相关运算后在虚拟示波器中显示。实验步骤: (1)将数/模转换器(B2)输出OUT2作为被测系统的输入。(2)构造模拟电路:安置短路套及测孔联线表同笫3.2.2 节二阶闭环系统的频率特性曲线测试。(3)运行、观察、记录: 将数/模转换器(B2)输出OUT2作为被测系统的输入,运行LABACT程序,在界面

40、的自动控制菜单下的线性控制系统的频率响应分析-实验项目,选择二阶系统,就会弹出虚拟示波器的界面,点击开始,实验开始后,实验机将自动产生0.5Hz16H等多种频率信号,等待将近十分钟,测试结束后,观察闭环对数幅频、相频曲线和幅相曲线。 待实验机把闭环频率特性测试结束后,再在示波器界面左上角的红色开环或闭环字上双击,将在示波器界面上弹出开环闭环选择框,点击确定后,示波器界面左上角的红字,将变为开环然后再在示波器界面下部频率特性选择框点击(任一项),在示波器上将转为开环频率特性显示界面。可点击界面下方的“频率特性”选择框中的任意一项进行切换,将显示被测系统的开环对数幅频、相频特性曲线(伯德图)和幅相

41、曲线(奈奎斯特图)。在开环频率特性界面上,亦可转为闭环频率特性显示界面,方法同上。在频率特性显示界面的左上角,有红色开环或闭环字表示当前界面的显示状态。图3-2-4的被测二阶系统的开环对数幅频曲线的实验结果见图3-2-6所示。 显示该系统用户点取的频率点的、L、Im、Re实验机在测试频率特性结束后,将提示用户用鼠标直接在幅频或相频特性曲线的界面上点击所需增加的频率点(为了教育上的方便,本实验机选取的频率值f,以0.1Hz为分辨率,例如所选择的信号频率f值为4.19Hz,则被认为4.1 Hz送入到被测对象的输入端),实验机将会把鼠标点取的频率点的频率信号送入到被测对象的输入端,然后检测该频率的频

42、率特性。检测完成后在界面上方显示该频率点的f、L、Im、Re相关数据,同时在曲线上打十字标记。如果增添的频率点足够多,则特性曲线将成为近似光滑的曲线。鼠标在界面上移动时,在界面的左下角将会同步显示鼠标位置所选取的角频率值及幅值或相位值。在AedkLabACT两阶频率特性数据表中将列出所有测试到的频率点的开环L、Im、Re等相关数据测量。注:该数据表不能自动更新,只能用关闭后再打开的办法更新。 幅值穿越频率c ,相位裕度的测试:在开环对数幅频曲线中,用鼠标在曲线L()=0 处点击一下,待检测完成后,就可以根据十字标记测得系统的幅值穿越频率c ,见图3-2-6 (a);同时还可在开环对数相频曲线上根据十字标记测得该系统的相位裕度。实验结果可与式(3-2-11)和(3-2-12)的理论计算值进行比对。注1:用户用鼠标只能在幅频或相频特性曲线的界面上点击所需增加的频率点,无法在幅相曲线的界面上点击所需增加的频率点。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 办公文档 > 其他范文


备案号:宁ICP备20000045号-2

经营许可证:宁B2-20210002

宁公网安备 64010402000987号