《浙江省温州市十校联合体高三下学期期初联考文科数学试题及答案.doc》由会员分享,可在线阅读,更多相关《浙江省温州市十校联合体高三下学期期初联考文科数学试题及答案.doc(10页珍藏版)》请在三一办公上搜索。
1、一、选择题:本大题有8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个选项是符合题目要求的1. 已知全集为,集合,,则 为 ( )A. B. C. D. 2. 已知函数,其中为常数那么“”是“为奇函数”的( )A充分而不必要条件 B必要而不充分条件C充分必要条件 D既不充分也不必要条件3.下列函数中,在区间上为增函数的是 ( )A B C D4设是两条不同的直线,是两个不同的平面,则下列命题中正确的是 (A)若且,则 (B)若且,则(C)若且,则 (D)若且,则 5已知等差数列an单调递增且满足a1a106,则a7的取值范围是A、(3,6) B、(,3) C、(3,) D、(4,
2、)6若角的终边上有一点P(1,m),且,则m的值为A、 B、 C、或 D、7.设向量,其中,若,则等于( )A B. C. D.8. 设为椭圆与双曲线的公共的左右焦点,它们在第一象限内交于点,是以线段为底边的等腰三角形,且.若椭圆的离心率,则双曲线的离心率取值范围是( ) A. B. C. D.二、填空题(本大题共7小题,9-12小题每小题6分,13-15小题每小题4分,共36分)9已知,那么=_,= _10若、满足约束条件,则目标函数的最大值为 ,最小值为 。11.已知直线:,若直线与直线垂直,则的值为_;若直线被圆:截得的弦长为4,则的值为 12把边长为的正方形沿对角线折起,形成的三棱锥的
3、正视图与俯视图如图所示,则其侧视图的面积为_,二面角的余弦值为_.13在直角三角形中,若,则 14.设AB是椭圆(ab0)中不平行于对称轴且过原点的一条弦,是椭圆上一点,直线与的斜率之积,则该椭圆的离心率为 15.已知数列的首项,且对每个是方程的两根,则 .三、解答题:(本大题有5小题,共 74分.解答应写出文字说明、证明过程或演算步骤.)16(本题满分15分)已知,递增的等差数列满足(1)求数列的通项公式;(2)设,试求满足的最大自然数。17(本题满分15分) 在中,内角的对边分别为,且,(I)求角的大小;(II)设边上的中点为,求的面积18(本题满分15分)ABDCMPN(第17题)已知正
4、四棱锥PABCD中,底面是边长为2的正方形,高为M为线段PC的中点() 求证:PA平面MDB;() N为AP的中点,求CN与平面MBD所成角的正切值 19. (本题满分15分)过直角坐标平面中的抛物线的焦点作一条倾斜角为的直线与抛物线相交于A,B两点。 (1)若=2,求A,B两点间的距离; (2)当时,判断是否为定值。若是,求出其余弦值;若不是,说明理由。20(本题满分14分)已知函数,其中为实数。(1)若(2)若在上单调,求的取值范围。 2014学年第二学期十校联合体高三期初联考答案文科数学试卷三、解答题(本大题有5小题,共74分.解答应写出文字说明、证明过程或演算步骤.)16解:(1)由已
5、知得-2分即化简得,-4分递增,-6分(2)-8分-12分即 估算得最大值为7-15分17. 解:(1)由,得, 1分又,代入得,由,得, 3分, 5分得, 7分(2), 9分,则 12分 15分ABDCMPN(第18题)OE18. ()证明:在四棱锥PABCD中,连结AC交BD于点O,连结OM,PO由条件可得PO,AC2,PAPC2,COAO因为在PAC中,M为PC的中点,O为AC的中点,所以OM为PAC的中位线,得OMAP,3分又因为AP平面MDB,OM平面MDB,所以PA平面MDB 6分() 解:设NCMOE,由题意得BPBC2,且CPN90因为M为PC的中点,所以PCBM,同理PCDM,故PC平面BMD9分所以直线CN在平面BMD内的射影为直线OM,MEC为直线CN与平面BMD所成的角,11分又因为OMPA,所以PNCMEC在RtCPN中,CP2,NP1,所以tanPNC,故直线 CN与平面BMD所成角的正切值为2 15分19. 解:(1)焦点,过抛物线的焦点且倾斜角为的直线方程是由 ( 或 ).5分 (2).8 13分或 的大小是与无关的定值。.15分20.解:令则-1分(1),又-3分当时,-5分当时,-7分综上时,为5,45-8分