高中数学必修三统计概率大题.doc

上传人:文库蛋蛋多 文档编号:4226784 上传时间:2023-04-10 格式:DOC 页数:26 大小:532.50KB
返回 下载 相关 举报
高中数学必修三统计概率大题.doc_第1页
第1页 / 共26页
高中数学必修三统计概率大题.doc_第2页
第2页 / 共26页
高中数学必修三统计概率大题.doc_第3页
第3页 / 共26页
高中数学必修三统计概率大题.doc_第4页
第4页 / 共26页
高中数学必修三统计概率大题.doc_第5页
第5页 / 共26页
点击查看更多>>
资源描述

《高中数学必修三统计概率大题.doc》由会员分享,可在线阅读,更多相关《高中数学必修三统计概率大题.doc(26页珍藏版)》请在三一办公上搜索。

1、必修三统计概率一解答题(共26小题)1某地区2007年至2013年农村居民家庭人均纯收入y(单位:千元)的数据如下表:年份2007200820092010201120122013年份代号t1234567人均纯收入y2.93.33.64.44.85.25.9()求y关于t的线性回归方程;()利用()中的回归方程,分析2007年至2013年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2015年农村居民家庭人均纯收入附:回归直线的斜率和截距的最小二乘估计公式分别为:=,=2对某校高三年级学生参加社区服务次数进行统计,随机抽取M名学生作为样本,得到这M名学生参加社区服务的次数根据此数据作出了频

2、数与频率的统计表如下,频率分布直方图如图:分组频数频率10,15)100.2515,20)24n20,25)mp25,30)20.05合计M1()求出表中M,p及图中a的值;()若该校高三学生有240人,试估计该校高三学生参加社区服务的次数在区间10,15)内的人数;()在所取样本中,从参加社区服务的次数不少于20次的学生中任选2人,求至多一人参加社区服务次数在区间25,30)内的概率3某校100名学生期中考试语文成绩的频率分布直方图如图所示,其中成绩分组区间是:50,60),60,70),70,80),80,90),90,100(1)求图中a的值;(2)根据频率分布直方图,估计这100名学生

3、语文成绩的平均分;(3)若这100名学生语文成绩某些分数段的人数(x)与数学成绩相应分数段的人数(y)之比如表所示,求数学成绩在50,90)之外的人数分数段50,60)60,70)70,80)80,90)x:y1:12:13:44:54某公司有一批专业技术人员,对他们进行年龄状况和接受教育程度(学历)的调查,其结果(人数分布)如下表:学历35岁以下3550岁50岁以上本科803020研究生x20y()用分层抽样的方法在3550岁年龄段的专业技术人员中抽取一个容量为5的样本,将该样本看成一个总体,从中任取2人,求至少有1人的学历为研究生的概率;()在这个公司的专业技术人员中按年龄状况用分层抽样的

4、方法抽取N个人,其中35岁以下48人,50岁以上10人,再从这N个人中随机抽取出1人,此人的年龄为50岁以上的概率为,求x,y的值5为调查某地区老人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了500位老年人,结果如下: 性别是否需要志愿 男女需要 4030不需要 160270(1)估计该地区老年人中,需要志愿者提供帮助的老年人的比例;(2)能否有99%的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关?P(k2k)0.00.0100.001k3.8416.63510.828(3)根据(2)的结论,能否提供更好的调查方法来估计该地区老年人中,需要志愿帮助的老年人的比例?说明理由

5、附:6某企业为了解下属某部门对本企业职工的服务情况,随机访问50名职工,根据这50名职工对该部门的评分,绘制频率分布直方图(如图所示),其中样本数据分组区间为40,50,50,60,80,90,90,100(1)求频率分布图中a的值;(2)估计该企业的职工对该部门评分不低于80的概率;(3)从评分在40,60的受访职工中,随机抽取2人,求此2人评分都在40,50的概率7某网站针对2014年中国好声音歌手A,B,C三人进行网上投票,结果如下:观众年龄支持A支持B支持C20岁以下20040080020岁以上(含20岁)100100400(1)在所有参与该活动的人中,用分层抽样的方法抽取n人,其中有

6、6人支持A,求n的值(2)在支持C的人中,用分层抽样的方法抽取6人作为一个总体,从这6人中任意选取2人,求恰有1人在20岁以下的概率8某班50名学生在一次百米测试中,成绩全部介于13秒与18秒之间,将测试结果按如下方式分成五组;第一组13,14),第二组14,15),第五组17,18,如图是按上述分组方法得到的频率分布直方图(1)若成绩大于或等于14秒且小于16秒认为良好,求该班在这次百米测试中成绩良好的人数;(2)设m,n表示该班某两位同学的百米测试成绩,且已知m,n13,14)17,18,求事件“|mn|1”的概率9某工厂生产的产品A的直径均位于区间110,118内(单位:mm)若生产一件

7、产品A的直径位于区间110,112,112,114,114,116,116,118内该厂可获利分别为10,20,30,10(单位:元),现从该厂生产的产品A中随机100件测量它们的直径,得到如图所示的频率分布直方图()求a的值,并估计该厂生产一件A产品的平均利润;()现用分层抽样法从直径位于区间112,116)内的产品中随机抽取一个容量为5的样本,再从样本中随机抽取两件产品进行检测,求两件产品中至少有一件产品的直径位于区间114,116)内的概率10某城市100户居民的月平均用电量(单位:度),以160,180),180,200),200,200),220.240),240,260),260,

8、280),280,300)分组的频率分布直方图如图(1)求直方图中x的值;(2)求月平均用电量的众数和中位数;(3)在月平均用电量为,220,240),240,260),260,280),280,300)的四组用户中,用分层抽样的方法抽取11户居民,则月平均用电量在220.240)的用户中应抽取多少户?12已知某校在一次考试中,5名学生的数学和地理成绩如表:学生的编号i12345数学成绩x8075706560地理成绩y7066686462(1)根据上表,利用最小二乘法,求出y关于x的线性回归方程=x+(其中=0.36);(2)利用(1)中的线性回归方程,试估计数学90分的同学的地理成绩(四舍五

9、入到整数);(3)若从五人中选2人参加数学竞赛,其中1、2号不同时参加的概率是多少?13为了研究某种细菌在特定环境下,随时间变化繁殖情况,得如下实验数据:天数t(天)34567繁殖个数y(千个)2.5344.56(1)求y关于t的线性回归方程;(2)利用(1)中的回归方程,预测t=8时,细菌繁殖个数附:回归直线的斜率和截距的最小二乘法估计公式分别为:=,=14某校100名学生期中考试数学成绩的频率分布直方图如图,其中成绩分组区间如下:组号第一组第二组第三组第四组第五组分组50,60)60,70)70,80)80,90)90,100()求图中a的值;()根据频率分布直方图,估计这100名学生期中

10、考试数学成绩的平均分;()现用分层抽样的方法从第3、4、5组中随机抽取6名学生,将该样本看成一个总体,从中随机抽取2名,求其中恰有1人的分数不低于90分的概率?15 20名学生某次数学考试成绩(单位:分)的频率分布直方图如图:()求频率分布直方图中a的值;()分别求出成绩落在50,60)与60,70)中的学生人数;()从成绩在50,70)的学生任选2人,求此2人的成绩都在60,70)中的概率16某中学高三年级从甲、乙两个班级各选出7名学生参加数学竞赛,他们取得的成绩(满分100分)的茎叶图如图,其中甲班学生的平均分是85,乙班学生成绩的中位数是83(1)求x和y的值;(2)计算甲班7位学生成绩

11、的方差s2;(3)从成绩在90分以上的学生中随机抽取两名学生,求甲班至少有一名学生的概率17某单位N名员工参加“社区低碳你我他”活动他们的年龄在25岁至50岁之间按年龄分组:第1组25,30),第2组30,35),第3组35,40),第4组40,45),第5组45,50,得到的频率分布直方图如图所示下表是年龄的频率分布表区间25,30)30,35)35,40)40,45)45,50人数25ab(1)求正整数a,b,N的值;(2)现要从年龄较小的第1,2,3组中用分层抽样的方法抽取6人,则年龄在第1,2,3组的人数分别是多少?(3)在(2)的条件下,从这6人中随机抽取2人参加社区宣传交流活动,求

12、恰有1人在第3组的概率18某市为了考核甲、乙两部门的工作情况,随机访问了50位市民,根据这50位市民对两部门的评分(评分越高表明市民的评价越高)绘制的茎叶图如图:()分别估计该市的市民对甲、乙两部门评分的中位数;()分别估计该市的市民对甲、乙两部门的评分高于90的概率;()根据茎叶图分析该市的市民对甲、乙两部门的评价19某校夏令营有3名男同学,A、B、C和3名女同学X,Y,Z,其年级情况如表:一年级二年级三年级男同学ABC女同学XYZ现从这6名同学中随机选出2人参加知识竞赛(每人被选到的可能性相同)()用表中字母列举出所有可能的结果;()设M为事件“选出的2人来自不同年级且恰有1名男同学和1名

13、女同学”,求事件M发生的概率20设甲、乙、丙三个乒乓球协会的运动员人数分别为27,9,18,先采用分层抽取的方法从这三个协会中抽取6名运动员组队参加比赛()求应从这三个协会中分别抽取的运动员的人数;()将抽取的6名运动员进行编号,编号分别为A1,A2,A3,A4,A5,A6,现从这6名运动员中随机抽取2人参加双打比赛(i)用所给编号列出所有可能的结果;(ii)设A为事件“编号为A5和A6的两名运动员中至少有1人被抽到”,求事件A发生的概率21某中学调查了某班全部45名同学参加书法社团和演讲社团的情况,数据如下表:(单位:人)参加书法社团未参加书法社团参加演讲社团85未参加演讲社团230()从该

14、班随机选1名同学,求该同学至少参加一个社团的概率;()在既参加书法社团又参加演讲社团的8名同学中,有5名男同学A1,A2,A3,A4,A5,3名女同学B1,B2,B3现从这5名男同学和3名女同学中各随机选1人,求A1被选中且B1未被选中的概率22对一批共50件的某电器进行分类检测,其重量(克)统计如下:质量段80,85)85,90)90,95)95,100件数5a15b规定重量在82克及以下的为“A”型,重量在85克及以上的为“B”型,已知该批电器有“A“型2件()从该批电器中任选1件,求其为“B“型的概率;()从重量在80,85)的5件电器中,任选2件,求其中恰有1件为“A”型的概率23如图

15、所示茎叶图记录了甲、乙两组各三名同学在期末考试中的数学成绩乙组记录中有一个数字模糊,无法确认,假设这个数字具有随机性,并在图中以a表示()若甲、乙两个小组的数学平均成绩相同,求a的值;()求乙组平均成绩超过甲组平均成绩的概率;()当a=2时,分别从甲、乙两组同学中各随机选取一名同学,求这两名同学的数学成绩之差的绝对值不超过2分的概率24某公司为了解用户对其产品的满意度,从A,B两地区分别随机调查了20个用户,得到用户对产品的满意度评分如下:A地区:62 73 81 92 95 85 74 64 53 76 78 86 95 66 97 78 88 82 76 89B地区:73 83 62 51

16、 91 46 53 73 64 82 93 48 65 81 74 56 54 76 65 79(1)根据两组数据完成两地区用户满意度评分的茎叶图,并通过茎叶图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,给出结论即可);(2)根据用户满意度评分,将用户的满意度从低到高分为三个等级:满意度评分低于70分70分到89分不低于90分满意度等级不满意满意非常满意记事件C:“A地区用户的满意度等级高于B地区用户的满意度等级”,假设两地区用户的评价结果相互独立,根据所给数据,以事件发生的频率作为相应事件发生的频率,求C的概率25某小组共有A、B、C、D、E五位同学,他们的身高(单位:米)以

17、及体重指标(单位:千克/米2)如下表所示:ABCDE身高1.691.731.751.791.82体重指标19.225.118.523.320.9()从该小组身高低于1.80的同学中任选2人,求选到的2人身高都在1.78以下的概率()从该小组同学中任选2人,求选到的2人的身高都在1.70以上且体重指标都在18.5,23.9)中的概率26某校从参加某次知识竞赛的同学中,选取60名同学将其成绩(百分制,均为整数)分成40,50),50,60),60,70),70,80),80,90),90,100六组后,得到部分频率分布直方图(如图),观察图形中的信息,回答下列问题()求分数在70,80)内的频率,

18、并补全这个频率分布直方图;()从频率分布直方图中,估计本次考试成绩的中位数;()若从第1组和第6组两组学生中,随机抽取2人,求所抽取2人成绩之差的绝对值大于10的概率2015年11月17日必修三统计概率参考答案与试题解析一解答题(共26小题)1(2014黑龙江)某地区2007年至2013年农村居民家庭人均纯收入y(单位:千元)的数据如下表:年份2007200820092010201120122013年份代号t1234567人均纯收入y2.93.33.64.44.85.25.9()求y关于t的线性回归方程;()利用()中的回归方程,分析2007年至2013年该地区农村居民家庭人均纯收入的变化情况

19、,并预测该地区2015年农村居民家庭人均纯收入附:回归直线的斜率和截距的最小二乘估计公式分别为:=,=【考点】线性回归方程【专题】计算题;概率与统计【分析】()根据所给的数据,利用最小二乘法可得横标和纵标的平均数,横标和纵标的积的和,与横标的平方和,代入公式求出b的值,再求出a的值,写出线性回归方程()根据上一问做出的线性回归方程,代入所给的t的值,预测该地区2015年农村居民家庭人均纯收入,这是一个估计值【解答】解:()由题意,=(1+2+3+4+5+6+7)=4,=(2.9+3.3+3.6+4.4+4.8+5.2+5.9)=4.3,=0.5,=4.30.54=2.3y关于t的线性回归方程为

20、=0.5t+2.3;()由()知,b=0.50,故2007年至2013年该地区农村居民家庭人均纯收入逐年增加,平均每年增加0.5千元将2015年的年份代号t=9代入=0.5t+2.3,得:=0.59+2.3=6.8,故预测该地区2015年农村居民家庭人均纯收入为6.8千元【点评】本题考查线性回归分析的应用,本题解题的关键是利用最小二乘法认真做出线性回归方程的系数,这是整个题目做对的必备条件,本题是一个基础题2(2014高州市模拟)对某校高三年级学生参加社区服务次数进行统计,随机抽取M名学生作为样本,得到这M名学生参加社区服务的次数根据此数据作出了频数与频率的统计表如下,频率分布直方图如图:分组

21、频数频率10,15)100.2515,20)24n20,25)mp25,30)20.05合计M1()求出表中M,p及图中a的值;()若该校高三学生有240人,试估计该校高三学生参加社区服务的次数在区间10,15)内的人数;()在所取样本中,从参加社区服务的次数不少于20次的学生中任选2人,求至多一人参加社区服务次数在区间25,30)内的概率【考点】随机抽样和样本估计总体的实际应用;频率分布直方图菁优网版权所有【专题】计算题;图表型【分析】(I)根据频率,频数和样本容量之间的关系即频率等于频数除以样本容量,写出算式,求出式子中的字母的值(II)根据该校高三学生有240人,分组10,15)内的频率

22、是0.25,估计该校高三学生参加社区服务的次数在此区间内的人数为60人(III)这个样本参加社区服务的次数不少于20次的学生共有m+2=6人,设出在区间20,25)内的人为a1,a2,a3,a4,在区间25,30)内的人为b1,b2,列举出所有事件和满足条件的事件,得到概率【解答】解:()由分组10,15)内的频数是10,频率是0.25知,M=40频数之和为40,10+24+m+2=40,m=4.a是对应分组15,20)的频率与组距的商,()因为该校高三学生有240人,分组10,15)内的频率是0.25,估计该校高三学生参加社区服务的次数在此区间内的人数为60人()这个样本参加社区服务的次数不

23、少于20次的学生共有m+2=6人,设在区间20,25)内的人为a1,a2,a3,a4,在区间25,30)内的人为b1,b2则任选2人共有(a1,a2),(a1,a3),(a1,a4),(a1,b1),(a1,b2),(a2,a3),(a2,a4),(a2,b1),(a2,b2),(a3,a4),(a3,b1),(a3,b2),(a4,b1),(a4,b2),(b1,b2)15种情况,而两人都在25,30)内只能是(b1,b2)一种,所求概率为【点评】本题考查频率分步直方图,考查用样本估计总体,考查等可能事件的概率,考查频率,频数和样本容量之间的关系,本题是一个基础题3(2012广东)某校100

24、名学生期中考试语文成绩的频率分布直方图如图所示,其中成绩分组区间是:50,60),60,70),70,80),80,90),90,100(1)求图中a的值;(2)根据频率分布直方图,估计这100名学生语文成绩的平均分;(3)若这100名学生语文成绩某些分数段的人数(x)与数学成绩相应分数段的人数(y)之比如表所示,求数学成绩在50,90)之外的人数分数段50,60)60,70)70,80)80,90)x:y1:12:13:44:5【考点】用样本的频率分布估计总体分布;频率分布直方图;众数、中位数、平均数菁优网版权所有【专题】概率与统计【分析】(1)由频率分布直方图的性质可10(2a+0.02+

25、0.03+0.04)=1,解方程即可得到a的值;(2)由平均数加权公式可得平均数为550.05+650.4+750.3+850.2+950.05,计算出结果即得;(3)按表中所给的数据分别计算出数学成绩在分数段的人数,从总人数中减去这些段内的人数即可得出数学成绩在50,90)之外的人数【解答】解:(1)依题意得,10(2a+0.02+0.03+0.04)=1,解得a=0.005;(2)这100名学生语文成绩的平均分为:550.05+650.4+750.3+850.2+950.05=73(分);(3)数学成绩在50,60)的人数为:1000.05=5,数学成绩在60,70)的人数为:,数学成绩在

26、70,80)的人数为:,数学成绩在80,90)的人数为:,所以数学成绩在50,90)之外的人数为:1005204025=10【点评】本题考查频率分布估计总体分布,解题的关键是理解频率分布直方图,熟练掌握频率分布直方图的性质,且能根据所给的数据建立恰当的方程求解4(2014烟台三模)某公司有一批专业技术人员,对他们进行年龄状况和接受教育程度(学历)的调查,其结果(人数分布)如下表:学历35岁以下3550岁50岁以上本科803020研究生x20y()用分层抽样的方法在3550岁年龄段的专业技术人员中抽取一个容量为5的样本,将该样本看成一个总体,从中任取2人,求至少有1人的学历为研究生的概率;()在

27、这个公司的专业技术人员中按年龄状况用分层抽样的方法抽取N个人,其中35岁以下48人,50岁以上10人,再从这N个人中随机抽取出1人,此人的年龄为50岁以上的概率为,求x,y的值【考点】分层抽样方法;古典概型及其概率计算公式菁优网版权所有【专题】计算题【分析】(I)用分层抽样得到学历为本科的人数,后面的问题是一个古典概型,试验发生包含的事件是从5个人中容易抽取2个,事件数可以列举出,满足条件的事件是至少有1人的学历为研究生,从列举出的事件中看出结果(II)根据在抽样过程中每个个体被抽到的概率相等,表示出年龄为50岁以上的概率,利用解方程思想解出x,y的值【解答】解:()用分层抽样的方法在3550

28、岁中抽取一个容量为5的样本,设抽取学历为本科的人数为m解得m=3抽取了学历为研究生2人,学历为本科的3,分别记作S1、S2;B1、B2、B3从中任取2人的所有基本事件共10个:(S1,B1)、(S1,B2)、(S1,B3)、(S2,B1)、(S2,B2)、(S2,B3)、(S1,S2)、(B1,B2)、(B2,B3)、(B1,B3)其中至少有1人的学历为研究生的基本事件有7个:(S1,B1)、(S1,B2)、(S1,B3)、(S2,B1)、(S2,B2)、(S2,B3)、(S1,S2)从中任取1人,至少有1人的教育程度为研究生的概率为()解:依题意得:,解得N=783550岁中被抽取的人数为7

29、84810=20,解得x=40,y=5x=40,y=5【点评】本题考查分层抽样方法,考查古典概型的概率及其概率公式,考查利用列举法列举出试验包含的所有事件,列举法是解决古典概型的首选方法5(2010河北)为调查某地区老人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了500位老年人,结果如下: 性别是否需要志愿 男女需要 4030不需要 160270(1)估计该地区老年人中,需要志愿者提供帮助的老年人的比例;(2)能否有99%的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关?(3)根据(2)的结论,能否提供更好的调查方法来估计该地区老年人中,需要志愿帮助的老年人的比例?说明理由

30、附:P(k2k)0.00.0100.001k3.8416.63510.828【考点】简单随机抽样;独立性检验菁优网版权所有【专题】计算题【分析】(1)由列联表可知调查的500位老年人中有40+30=70位需要志愿者提供帮助,两个数据求比值得到该地区老年人中需要帮助的老年人的比例的估算值(2)根据列联表所给的数据,代入随机变量的观测值公式,得到观测值的结果,把观测值的结果与临界值进行比较,看出有多大把握说该地区的老年人是否需要帮助与性别有关(3)从样本数据老年人中需要帮助的比例有明显差异,调查时,可以先确定该地区老年人中男、女的比例,再把老年人分成男、女两层并采用分层抽样方法比采用简单随机抽样方

31、法更好【解答】解:(1)调查的500位老年人中有40+30=70位需要志愿者提供帮助,该地区老年人中需要帮助的老年人的比例的估算值为(2)根据列联表所给的数据,代入随机变量的观测值公式,9.9676.635,有99%的把握认为该地区的老年人是否需要帮助与性别有关(3)由(2)的结论知,该地区老年人是否需要帮助与性别有关,并且从样本数据能看出该地区男性老年人与女性老年人中需要帮助的比例有明显差异,因此在调查时,先确定该地区老年人中男、女的比例,再把老年人分成男、女两层并采用分层抽样方法比采用简单随机抽样方法更好【点评】本题主要考查统计学知识,考查独立性检验的思想,考查利用数学知识研究实际问题的能

32、力以及相应的运算能力6(2015安徽)某企业为了解下属某部门对本企业职工的服务情况,随机访问50名职工,根据这50名职工对该部门的评分,绘制频率分布直方图(如图所示),其中样本数据分组区间为40,50,50,60,80,90,90,100(1)求频率分布图中a的值;(2)估计该企业的职工对该部门评分不低于80的概率;(3)从评分在40,60的受访职工中,随机抽取2人,求此2人评分都在40,50的概率【考点】频率分布直方图菁优网版权所有【专题】概率与统计【分析】(1)利用频率分布直方图中的信息,所有矩形的面积和为1,得到a;(2)对该部门评分不低于80的即为90和100,的求出频率,估计概率;(

33、3)求出评分在40,60的受访职工和评分都在40,50的人数,随机抽取2人,列举法求出所有可能,利用古典概型公式解答【解答】解:(1)因为(0.004+a+0.018+0.0222+0.028)10=1,解得a=0.006;(2)由已知的频率分布直方图可知,50名受访职工评分不低于80的频率为(0.022+0.018)10=0.4,所以该企业职工对该部门评分不低于80的概率的估计值为0.4;(3)受访职工中评分在50,60)的有:500.00610=3(人),记为A1,A2,A3;受访职工评分在40,50)的有:500.00410=2(人),记为B1,B2从这5名受访职工中随机抽取2人,所有可

34、能的结果共有10种,分别是A1,A2,A1,A3,A1,B1,A1,B2,A2,A3,A2,B1,A2,B2,A3,B1,A3,B2,B1,B2,又因为所抽取2人的评分都在40,50)的结果有1种,即B1,B2,故所求的概率为P=【点评】本题考查了频率分布直方图的认识以及利用图中信息求参数以及由频率估计概率,考查了利用列举法求满足条件的事件,并求概率7(2015宿州一模)某网站针对2014年中国好声音歌手A,B,C三人进行网上投票,结果如下:观众年龄支持A支持B支持C20岁以下20040080020岁以上(含20岁)100100400(1)在所有参与该活动的人中,用分层抽样的方法抽取n人,其中

35、有6人支持A,求n的值(2)在支持C的人中,用分层抽样的方法抽取6人作为一个总体,从这6人中任意选取2人,求恰有1人在20岁以下的概率【考点】分层抽样方法;古典概型及其概率计算公式菁优网版权所有【专题】计算题;概率与统计【分析】(1)根据分层抽样时,各层的抽样比相等,结合已知构造关于n的方程,解方程可得n值(2)计算出这6人中任意选取2人的情况总数,及满足恰有1人在20岁以下的情况数,代入古典概率概率计算公式,可得答案【解答】解:(1)利用层抽样的方法抽取n个人时,从“支持A方案”的人中抽取了6人,=,解得n=40;(2)从“支持C方案”的人中,用分层抽样的方法抽取的6人中,年龄在20岁以下的

36、有4人,分别记为1,2,3,4,年龄在20岁以上(含20岁)的有2人,记为a,b,则这6人中任意选取2人,共有=15种不同情况,分别为:(1,2),(1,3),(1,4),(1,a),(1,b),(2,3),(2,4),(2,a),(2,b),(3,4),(3,a),(3,b),(4,a),(4,b),(a,b),其中恰好有1人在20岁以下的事件有:(1,a),(1,b),(2,a),(2,b),(3,a),(3,b),(4,a),(4,b)共8种故恰有1人在20岁以下的概率P=【点评】本题考查的知识点是古典概型概率计算公式,其中熟练掌握利用古典概型概率计算公式求概率的步骤,是解答的关键8(2

37、015日照二模)某班50名学生在一次百米测试中,成绩全部介于13秒与18秒之间,将测试结果按如下方式分成五组;第一组13,14),第二组14,15),第五组17,18,如图是按上述分组方法得到的频率分布直方图(1)若成绩大于或等于14秒且小于16秒认为良好,求该班在这次百米测试中成绩良好的人数;(2)设m,n表示该班某两位同学的百米测试成绩,且已知m,n13,14)17,18,求事件“|mn|1”的概率【考点】用样本的频率分布估计总体分布;频率分布直方图;古典概型及其概率计算公式菁优网版权所有【专题】计算题【分析】(1)利用频率分布直方图中的频率等于纵坐标乘以组距求出绩大于或等于14秒且小于1

38、6秒的频率;利用频数等于频率乘以样本容量求出该班在这次百米测试中成绩良好的人数(2)按照(1)的方法求出成绩在13,14)及在17,18的人数;通过列举得到m,n都在13,14)间或都在17,18间或一个在13,14)间一个在17,18间的方法数,三种情况的和为总基本事件的个数;分布在两段的情况数是事件“|mn|1”包含的基本事件数;利用古典概型的概率公式求出事件“|mn|1”的概率【解答】解:(1)由直方图知,成绩在14,16)内的人数为:500.16+500.38=27(人),所以该班成绩良好的人数为27人、(2)由直方图知,成绩在13,14)的人数为500.06=3人,设为为x,y,z;

39、成绩在17,18的人数为500.08=4人,设为A、B、C、D若m,n13,14)时,有xy,xz,yz共3种情况;若m,n17,18时,有AB,AC,AD,BC,BD,CD,共6种情况;若m,n分别在13,14)和17,18内时,ABCDxxAxBxCxDyyAyByCyDzzAzBzCzD有12种情况、所以,基本事件总数为3+6+12=21种,事件“|mn|1”所包含的基本事件个数有12种、(12分)【点评】本题考查频率分布直方图中的频率等于纵坐标乘以组距、考查频数等于频率乘以样本容量、考查列举法求完成事件的方法数、考查古典概型的概率公式9(2014岳阳二模)某工厂生产的产品A的直径均位于

40、区间110,118内(单位:mm)若生产一件产品A的直径位于区间110,112,112,114,114,116,116,118内该厂可获利分别为10,20,30,10(单位:元),现从该厂生产的产品A中随机100件测量它们的直径,得到如图所示的频率分布直方图()求a的值,并估计该厂生产一件A产品的平均利润;()现用分层抽样法从直径位于区间112,116)内的产品中随机抽取一个容量为5的样本,再从样本中随机抽取两件产品进行检测,求两件产品中至少有一件产品的直径位于区间114,116)内的概率【考点】分层抽样方法;古典概型及其概率计算公式菁优网版权所有【专题】计算题;概率与统计【分析】(I)利用所

41、有小矩形的面积之和为1求得a值;根据频数=频率样本容量求得各组的频数,代入平均数公式计算;(II)根据频率分布直方图求得直径位于区间112,114)和114,116)的频率之比,可得在两组中应取的产品数,利用写出所有基本事件的方法求符合条件的基本事件个数比;【解答】解:(I)由频率分布直方图得:2(0.050+0.150+a+0.075)=1a=0.225,直径位于区间110,112)的频数为10020.050=10,位于区间112,114)的频数为10020.150=30,位于区间114,116)的频数为10020.225=45,位于区间116,118)的频数为10020.075=15,生产

42、一件A产品的平均利润为=22(元);(II)由频率分布直方图得:直径位于区间112,114)和114,116)的频率之比为2:3,应从直径位于区间112,114)的产品中抽取2件产品,记为A、B,从直径位于区间114,116)的产品中抽取3件产品,记为a、b、c,从中随机抽取两件,所有可能的取法有,(A,B),(A,a),(A,b),(A,c),(B,a),(B,b),(B,c),(a,b),(a,c),(b,c)10种,两件产品都不在区间114,116)的取法只有(A,B)一种,两件产品中至少有一件产品的直径位于区间114,116)内的取法有9种所求概率为P=【点评】本题考查了分层抽样方法,考查了古典概型的概率计算,读懂频率分布直方图是解答本题的关键10(2015广东)某城市100户居民的月平均用电量(单位:度),以160,180),180,200),200,200),220.240),240,260),260,280),280,300)分组的频率分布直方图如图(1)求直方图中x的值;(2)求月平均用电量的众数和中位数;(3)在月平均用电量为,220,240),240,260),260,280),280,300)的四组用户中,用分层抽样的方法抽取11户居民,则月平均用电量在220.240)的用户中应抽取多少户?【考点】频率分布直方图菁优网版权所有【专题】概率与

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 办公文档 > 其他范文


备案号:宁ICP备20000045号-2

经营许可证:宁B2-20210002

宁公网安备 64010402000987号