高中物理必修2全册总复习资料.doc

上传人:文库蛋蛋多 文档编号:4227230 上传时间:2023-04-10 格式:DOC 页数:13 大小:211.50KB
返回 下载 相关 举报
高中物理必修2全册总复习资料.doc_第1页
第1页 / 共13页
高中物理必修2全册总复习资料.doc_第2页
第2页 / 共13页
高中物理必修2全册总复习资料.doc_第3页
第3页 / 共13页
高中物理必修2全册总复习资料.doc_第4页
第4页 / 共13页
高中物理必修2全册总复习资料.doc_第5页
第5页 / 共13页
点击查看更多>>
资源描述

《高中物理必修2全册总复习资料.doc》由会员分享,可在线阅读,更多相关《高中物理必修2全册总复习资料.doc(13页珍藏版)》请在三一办公上搜索。

1、高中物理必修2全册复习机械能守恒定律(一)、知识网络机械能守定律功和功率功概念:力和力的方向上的位移的乘积公式F与L同向:W=FLF与L不同向:W=FLcos900,W为负功率概念:功跟完成功所用的时间的比值公式P=W/t (平均功率)P=Fv (瞬时功率)动能定理:FL=mv22/2-mv12/2机械能动能和势能机械能守恒定律:EP1+Ek1= EP2+Ek2验证机械能守恒定律能源能源耗散功是能量转化的量度能量守恒定律人类利用能源的历史(二)、重点内容讲解1.机车起动的两种过程(1) 一恒定的功率起动机车以恒定的功率起动后,若运动过程所受阻力f不变,由于牵引力F=P/v随v增大,F减小.根据

2、牛顿第二定律a=(F-f)/m=P/mv-f/m,当速度v增大时,加速度a减小,其运动情况是做加速度减小的加速运动。直至F=F时,a减小至零,此后速度不再增大,速度达到最大值而做匀速运动,做匀速直线运动的速度是vm=P/f,下面是这个动态过程的简单方框图 速度 v 当a=0时 a =(F-f)/m 即F=f时 保持vm匀速F =P/v v达到最大vm变加速直线运动 匀速直线运动这一过程的v-t关系如图所示(2) 车以恒定的加速度起动由a=(F-f)/m知,当加速度a不变时,发动机牵引力F恒定,再由P=Fv知,F一定,发动机实际输出功P 随v的增大而增大,但当增大到额定功率以后不再增大,此后,发

3、动机保持额定功率不变,继续增大,牵引力减小,直至F=f时,a=0 ,车速达到最大值vm= P额 /f,此后匀速运动在P增至P额之前,车匀加速运动,其持续时间为t0 = v0/a= P额/Fa = P额/(ma+F)a(这个v0必定小于vm,它是车的功率增至P额之时的瞬时速度)计算时,先计算出F,F-F=ma ,再求出v=P额/F,最后根据v=at求t在P增至P额之后,为加速度减小的加速运动,直至达到vm.下面是这个动态过程的方框图.当P=P额时a=(F-f)/m0v还要增大P=F定v即P随v增大而增大a定=(F-f)/m即F一定F=P/v增大a=(F-f)/减小匀加速直线运动变加速直线运动保持

4、vm匀速运动当a=0时即F=f时v最大为 vm匀速直线运动v vm注意:中的仅是机车的牵引力,而非车辆所受的合力,这一点在计算题目中极易出错.实际上,飞机轮船火车等交通工具的最大行驶速度受到自身发动机额定功率P和运动阻力f两个因素的共同制约,其中运动阻力既包括摩擦阻力,也包括空气阻力,而且阻力会随着运动速度的增大而增大.因此,要提高各种交通工具的最大行驶速度,除想办法提高发动机的额定功率外,还要想办法减小运动阻力,汽车等交通工具外型的流线型设计不仅为了美观,更是出于减小运动阻力的考虑.2. 动能定理(1) 内容:合力所做的功等于物体动能的变化(2) 表达式:W合=EK2-EK1=E或W合= m

5、v22/2- mv12/2 。其中EK2表示一个过程的末动能mv22/2,EK1表示这个过程的初动能mv12/2。(3) 物理意义:动能地理实际上是一个质点的功能关系,即合外力对物体所做的功是物体动能变化的量度,动能变化的大小由外力对物体做的总功多少来决定。动能定理是力学的一条重要规律,它贯穿整个物理教材,是物理课中的学习重点。说明:动能定理的理解及应用要点(1) 动能定理的计算式为标量式,v为相对与同一参考系的速度。(2) 动能定理的研究对象是单一物体,或者可以看成单一物体的物体系.(3) 动能定理适用于物体的直线运动,也适用于曲线运动;适用于恒力做功,也适用于变力做功,力可以是各种性质的力

6、,既可以同时作用,也可以分段作用。只要求出在作用的过程中各力做功的多少和正负即可。这些正是动能定理解题的优越性所在。(4) 若物体运动的过程中包含几个不同过程,应用动能定理时,可以分段考虑,也可以考虑全过程作为一整体来处理。3.动能定理的应用(1) 一个物体的动能变化EK与合外力对物体所做的功W具有等量代换关系,若EK0,表示物体的动能增加,其增加量等于合外力对物体所做的正功;若EK0,表示物体的动能减小,其减少良等于合外力对物体所做的负功的绝对值;若EK=0,表示合外力对物体所做的功等于零。反之亦然。这种等量代换关系提供了一种计算变力做功的简便方法。(2) 动能定理中涉及的物理量有F、L、m

7、、v、W、EK等,在处理含有上述物理量的力学问题时,可以考虑使用动能定理。由于只需从力在整个位移内的功和这段位移始末两状态动能变化去考察,无需注意其中运动状态变化的细节,又由于动能和功都是标量,无方向性,无论是直线运动还是曲线运动,计算都会特别方便。(3) 动能定理解题的基本思路 选取研究对象,明确它的运动过程。 分析研究对象的受力情况和各个力做功情况然后求各个外力做功的代数和。 明确物体在过程始末状态的动能EK1和EK2。 列出动能定理的方程W合=EK2-EK1,及其他必要的解题过程,进行求解。4.应用机械能守恒定律的基本思路:应用机械能守恒定律时,相互作用的物体间的力可以是变力,也可以是恒

8、力,只要符合守恒条件,机械能就守恒。而且机械能守恒定律,只涉及物体第的初末状态的物理量,而不须分析中间过程的复杂变化,使处理问题得到简化,应用的基本思路如下: 选取研究对象-物体系或物体。 根据研究对象所经右的物理过程,进行受力、做功分析,判断机械能是否守恒。 恰当地选取参考平面,确定对象在过程的初末状态时的机械能。(一般选地面或最低点为零势能面) 根据机械能守恒定律列方程,进行求解。 注意:(1)用机械能守恒定律做题,一定要按基本思路逐步分析求解。(2)判断系统机械能是否守怛的另外一种方法是:若物体系中只有动能和势能的相互转化而无机械能与其它形式的能的转化,则物体系机械能守恒。(三)常考模型

9、规律示例总结1. 机车起动的两种过程(1)一恒定的功率起动机车以恒定的功率起动后,若运动过程所受阻力f不变,由于牵引力F=P/v随v增大,F减小.根据牛顿第二定律a=(F-f)/m=P/mv-f/m,当速度v增大时,加速度a减小,其运动情况是做加速度减小的加速运动。直至F=F时,a减小至零,此后速度不再增大,速度达到最大值而做匀速运动,做匀速直线运动的速度是vm=P/f,下面是这个动态过程的简单方框图 速度 v 当a=0时 a =(F-f)/m 即F=f时 保持vm匀速F =P/v v达到最大vm变加速直线运动 匀速直线运动(2)车以恒定的加速度起动由a=(F-f)/m知,当加速度a不变时,发

10、动机牵引力F恒定,再由P=Fv知,F一定,发动机实际输出功P 随v的增大而增大,但当增大到额定功率以后不再增大,此后,发动机保持额定功率不变,继续增大,牵引力减小,直至F=f时,a=0 ,车速达到最大值vm= P额 /f,此后匀速运动在P增至P额之前,车匀加速运动,其持续时间为t0 = v0/a= P额/Fa = P额/(ma+F)a(这个v0必定小于vm,它是车的功率增至P额之时的瞬时速度)计算时,先计算出F,F-F=ma ,再求出v=P额/F,最后根据v=at求t在P增至P额之后,为加速度减小的加速运动,直至达到vm.下面是这个动态过程的方框图.当P=P额时a=(F-f)/m0v还要增大P

11、=F定v即P随v增大而增大a定=(F-f)/m即F一定F=P/v增大a=(F-f)/减小匀加速直线运动变加速直线运动保持vm匀速运动当a=0时即F=f时v最大为 vm匀速直线运动v这一过程的关系可由右图所示 vm注意:中的仅是机车的牵引力,而非车辆所受的合力,这v0一点在计算题目中极易出错. 实际上,飞机轮船火车等交通工具的最大行驶速度受到自身发动机额定功率P和运动阻力f两个因素的共同制约,其中运动阻力既包括摩擦阻力,也包括空气阻力,而且阻力会随着运动速度的增大而增大.因此,要提高各种交通工具的最大行驶速度,除想办法提高发动机的额定功率外,还要想办法减小运动阻力,汽车等交通工具外型的流线型设计

12、不仅为了美观,更是出于减小运动阻力的考虑.2. 动能定理内容和表达式合外力所做的功等于物体动能的变化,即W = EK2-EK1动能定理的应用技巧(1) 一个物体的动能变化EK与合外力对物体所做的功W具有等量代换关系。若EK0,表示物体的动能增加,其增加量等于合外力对物体所做的正功;若EK0,表示物体的动能减少,其减少量等于合外力对物体所做的负功的绝对值;若EK=0,表示合外力对物体所做的功为零。反之亦然。这种等量代换关系提供了一种计算变力做功的简便方法。(2) 动能定理中涉及的物理量有F、s、m、v、W、EK等,在处理含有上述物理量的力学问题时,可以考虑使用动能定理。由于只需从力在整个位移内的

13、功和这段位移始末两状态的动能变化去考虑,无需注意其中运动状态变化的细节,又由于动能和功都是标量,无方向性,无论是直线运动还是曲线运动,计算都会特别方便。当题给条件涉及力的位移,而不涉及加速度和时间时,用动能定理求解比用牛顿第二定律和运动学公式求解简便用动能定理还能解决一些用牛顿第二定律和运动学公式难以求解的问题,如变力做功过程、曲线运动等。3. 机械能守恒系统内各个物体若通过轻绳或轻弹簧连接,则各物体与轻弹簧或轻绳组成的系统机械能守恒。我们可以从三个不同的角度认识机械能守恒定律:(1) 从守恒的角度来看:过程中前后两状态的机械能相等,即E1=E2;(2) 从转化的角度来看:动能的增加等于势能的

14、减少或动能的减少等于势能的增加,EK=-EP(3) 从转移的角度来看:A物体机械能的增加等于B物体机械能的减少EA=-EB解题时究竟选取哪一个角度,应根据题意灵活选取,需注意的是:选用(1)式时,必须规定零势能参考面,而选用(2)式和(3)式时,可以不规定零势能参考面,但必须分清能量的减少量和增加量。曲线运动(一)、知识网络曲线运动曲线运动的条件:物体所受合力的方向跟它的速度方向不在同一直线上研究曲线运动的基本方法:运动的合成与分解两种特殊的曲线运动曲线运动运动性质:匀变速曲线运动规律:vx=v0vy=gt平抛运动x=v0ty=gt2/2匀速圆周运动运动性质:变速运动描述匀速圆周运动的几个物理

15、量:向心力:向心加速度:(二)重点内容讲解1、物体的运动轨迹不是直线的运动称为曲线运动,曲线运动的条件可从两个角度来理解:(1)从运动学角度来理解;物体的加速度方向不在同一条直线上;(2)从动力学角度来理解:物体所受合力的方向与物体的速度方向不在一条直线上。曲线运动的速度方向沿曲线的切线方向,曲线运动是一种变速运动。曲线运动是一种复杂的运动,为了简化解题过程引入了运动的合成与分解。一个复杂的运动可根据运动的实际效果按正交分解或按平行四边形定则进行分解。合运动与分运动是等效替代关系,它们具有独立性和等时性的特点。运动的合成是运动分解的逆运算,同样遵循平等四边形定则。2、平抛运动平抛运动具有水平初

16、速度且只受重力作用,是匀变速曲线运动。研究平抛运动的方法是利用运动的合成与分解,将复杂运动分解成水平方向的匀速直线运动和竖直方向的自由落体运动。其运动规律为:(1)水平方向:ax=0,vx=v0,x= v0t。(2)竖直方向:ay=g,vy=gt,y= gt2/2。(3)合运动:a=g,。vt与v0方向夹角为,tan= gt/ v0,s与x方向夹角为,tan= gt/ 2v0。平抛运动中飞行时间仅由抛出点与落地点的竖直高度来决定,即,与v0无关。水平射程s= v0。3、匀速圆周运动、描述匀速圆周运动的几个物理量、匀速圆周运动的实例分析。正确理解并掌握匀速圆周运动、线速度、角速度、周期和频率、向

17、心加速度、向心力的概念及物理意义,并掌握相关公式。圆周运动与其他知识相结合时,关键找出向心力,再利用向心力公式F=mv2/r=mr2=m42/T2列式求解。向心力可以由某一个力来提供,也可以由某个力的分力提供,还可以由合外力来提供,在匀速圆周运动中,合外力即为向心力,始终指向圆心,其大小不变,作用是改变线速度的方向,不改变线速度的大小,在非匀速圆周运动中,物体所受的合外力一般不指向圆心,各力沿半径方向的分力的合力指向圆心,此合力提供向心力,大小和方向均发生变化;与半径垂直的各分力的合力改变速度大小,在中学阶段不做研究。对匀速圆周运动的实例分析应结合受力分析,找准圆心的位置,结合牛顿第二定律和向

18、心力公式列方程求解,要注意绳类的约束条件为v临=,杆类的约束条件为v临=0。(三)常考模型规律示例总结1.渡河问题分析小船过河的问题,可以 小船渡河运动分解为他同时参与的两个运动,一是小船相对水的运动(设水不流时船的运动,即在静水中的运动),一是随水流的运动(水冲船的运动,等于水流的运动),船的实际运动为合运动.2. 平抛运动的规律平抛运动可以看成是水平方向的匀速直线运动和竖直方向的自由落体运动的合运动。以抛出点为原点,取水平方向为x轴,正方向与初速度v0的方向相同;竖直方向为y轴,正方向向下;物体在任一时刻t位置坐标P(x,y),位移s,速度vt(如图)的关系为:Oxyvtvxvy(1) 速

19、度公式水平分速度:vx=v0,竖直分速度:vy=gt.T时刻平抛物体的速度大小和方向:Vt=,tan=gt/v0(2) 位移公式(位置坐标):水平分位移:x=v0t,竖直分位移:y=gt2/2t时间内合位移的大小和方向:l=,tan=由于tan=2tan,vt的反向延长线与x轴的交点为水平位移的中点.(3) 轨迹方程:平抛物体在任意时刻的位置坐标x和y所满足的方程,叫轨迹方程,由位移公式消去t可得:y=x2或 x2=y显然这是顶点在原点,开口向下的抛物线方程,所以平抛运动的轨迹是一条抛物线.3. 传动装置的两个基本关系:皮带(齿轴,靠背轮)传动线速度相等,同轴转动的角速度相等.在分析传动装置的

20、各物理量之间的关系时,要首先明确什么量是相等的,什么量是不等的,在通常情况下同轴的各点角速度,转速n和周期T相等,而线速度v=r与半径成正比。在认为皮带不打滑的情况下,传动皮带与皮带连接的边缘的各点线速度的大小相等,而角速度=v/r 与半径r成反比.4. 杆对物体的拉力(1)在最高点,当球速为,杆对球无作用力。当球速小于,杆对球有向上的支持力。当球速大于,杆对球有向下的拉力。(2)在最低点,杆对球为向上的拉力。5. 竖直面内的圆周运动竖直面内圆周运动最高点处的受力特点及题型分类(图4)。图4这类问题的特点是:由于机械能守恒,物体做圆周运动的速率时刻在改变,所以物体在最高点处的速率最小,在最低点

21、处的速率最大。物体在最低点处向心力向上,而重力向下,所以弹力必然向上且大于重力;而在最高点处,向心力向下,重力也向下,所以弹力的方向就不能确定了,要分三种情况进行讨论。(1)弹力只可能向下,如绳拉球。这种情况下有,即,否则不能通过最高点;(2)弹力只可能向上,如车过桥。在这种情况下有,否则车将离开桥面,做平抛运动;(3)弹力既可能向上又可能向下,如管内转(或杆连球、环穿珠)。这种情况下,速度大小v可以取任意值。但可以进一步讨论:a. 当时物体受到的弹力必然是向下的;当时物体受到的弹力必然是向上的;当时物体受到的弹力恰好为零。b. 当弹力大小时,向心力有两解;当弹力大小时,向心力只有一解;当弹力

22、时,向心力等于零,这也是物体恰能过最高点的临界条件。第六章万有引力与航天(一)知识网络 托勒密:地心说人类对行 哥白尼:日心说星运动规 开普勒 第一定律(轨道定律)行星 第二定律(面积定律)律的认识 第三定律(周期定律) 运动定律 万有引力定律的发现 万有引力定律的内容 万有引力定律 FG 引力常数的测定 万有引力定律 称量地球质量M 万有引力 的理论成就 M 与航天 计算天体质量 rR,M= M= 人造地球卫星 M= 宇宙航行 G= m mr ma 第一宇宙速度7.9km/s 三个宇宙速度 第二宇宙速度11.2km/s 地三宇宙速度16.7km/s 宇宙航行的成就(二)、重点内容讲解计算重力

23、加速度1 在地球表面附近的重力加速度,在忽略地球自转的情况下,可用万有引力定律来计算。G=G=6.67*=9.8(m/)=9.8N/kg即在地球表面附近,物体的重力加速度g9.8m/。这一结果表明,在重力作用下,物体加速度大小与物体质量无关。2 即算地球上空距地面h处的重力加速度g。有万有引力定律可得:g又g,gg3 计算任意天体表面的重力加速度g。有万有引力定律得:g(M为星球质量,R卫星球的半径),又g,。体运行的基本公式在宇宙空间,行星和卫星运行所需的向心力,均来自于中心天体的万有引力。因此万有引力即为行星或卫星作圆周运动的向心力。因此可的以下几个基本公式。1 向心力的六个基本公式,设中

24、心天体的质量为M,行星(或卫星)的圆轨道半径为r,则向心力可以表示为:Gmam=mr=mr=mr=mv。2 五个比例关系。利用上述计算关系,可以导出与r相应的比例关系。 向心力:G,F;向心加速度:a=G, a;线速度:v,v;角速度:,;周期:T2,T。3 v与的关系。在r一定时,v=r,v;在r变化时,如卫星绕一螺旋轨道远离或靠近中心天体时,r不断变化,v、也随之变化。根据,v和,这时v与为非线性关系,而不是正比关系。一个重要物理常量的意义根据万有引力定律和牛顿第二定律可得:Gmr.这实际上是开普勒第三定律。它表明是一个与行星无关的物理量,它仅仅取决于中心天体的质量。在实际做题时,它具有重

25、要的物理意义和广泛的应用。它同样适用于人造卫星的运动,在处理人造卫星问题时,只要围绕同一星球运转的卫星,均可使用该公式。估算中心天体的质量和密度1 中心天体的质量,根据万有引力定律和向心力表达式可得:Gmr,M2 中心天体的密度方法一:中心天体的密度表达式,V(R为中心天体的半径),根据前面M的表达式可得:。当rR即行星或卫星沿中心天体表面运行时,。此时表面只要用一个计时工具,测出行星或卫星绕中心天体表面附近运行一周的时间,周期T,就可简捷的估算出中心天体的平均密度。方法二:由g=,M=进行估算,(三)常考模型规律示例总结1. 对万有引力定律的理解(1)万有引力定律:自然界中任何两个物体都是相

26、互吸引的,引力的大小跟这两个物体的质量的乘积成正比,跟它们的距离的平方成反比,两物体间引力的方向沿着二者的连线。(2)公式表示:F=。(3)引力常量G:适用于任何两物体。意义:它在数值上等于两个质量都是1kg的物体(可看成质点)相距1m时的相互作用力。G的通常取值为G=6。6710-11Nm2/kg2。是英国物理学家卡文迪许用实验测得。(4)适用条件:万有引力定律只适用于质点间引力大小的计算。当两物体间的距离远大于每个物体的尺寸时,物体可看成质点,直接使用万有引力定律计算。当两物体是质量均匀分布的球体时,它们间的引力也可以直接用公式计算,但式中的r是指两球心间的距离。当所研究物体不能看成质点时

27、,可以把物体假想分割成无数个质点,求出两个物体上每个质点与另一物体上所有质点的万有引力,然后求合力。(此方法仅给学生提供一种思路)(5)万有引力具有以下三个特性:普遍性:万有引力是普遍存在于宇宙中的任何有质量的物体(大到天体小到微观粒子)间的相互吸引力,它是自然界的物体间的基本相互作用之一。相互性:两个物体相互作用的引力是一对作用力和反作用力,符合牛顿第三定律。宏观性:通常情况下,万有引力非常小,只在质量巨大的天体间或天体与物体间它的存在才有宏观的物理意义,在微观世界中,粒子的质量都非常小,粒子间的万有引力可以忽略不计。2. 计算中心天体的质量解决天体运动问题,通常把一个天体绕另一个天体的运动

28、看作匀速圆周运动,处在圆心的天体称作中心天体,绕中心天体运动的天体称作运动天体,运动天体做匀速圆周运动所需的向心力由中心天体对运动天体的万有引力来提供。式中M为中心天体的质量,Sm为运动天体的质量,a为运动天体的向心加速度,为运动天体的角速度,T为运动天体的周期,r为运动天体的轨道半径.(1)天体质量的估算通过测量天体或卫星运行的周期T及轨道半径r,把天体或卫星的运动看作匀速圆周运动.根据万有引力提供向心力,有,得注意:用万有引力定律计算求得的质量M是位于圆心的天体质量(一般是质量相对较大的天体),而不是绕它做圆周运动的行星或卫星的m,二者不能混淆.用上述方法求得了天体的质量M后,如果知道天体

29、的半径R,利用天体的体积,进而还可求得天体的密度.如果卫星在天体表面运行,则r=R,则上式可简化为规律总结: 掌握测天体质量的原理,行星(或卫星)绕天体做匀速圆周运动的向心力是由万有引力来提供的. 物体在天体表面受到的重力也等于万有引力. 注意挖掘题中的隐含条件:飞船靠近星球表面运行,运行半径等于星球半径.(2)行星运行的速度、周期随轨道半径的变化规律研究行星(或卫星)运动的一般方法为:把行星(或卫星)运动当做匀速圆周运动,向心力来源于万有引力,即:根据问题的实际情况选用恰当的公式进行计算,必要时还须考虑物体在天体表面所受的万有引力等于重力,即3. 地球的同步卫星(通讯卫星)同步卫星:相对地球

30、静止,跟地球自转同步的卫星叫做同步卫星,周期T=24h,同步卫星又叫做通讯卫星。同步卫星必定点于赤道正上方,且离地高度h,运行速率v是唯一确定的。设地球质量为,地球的半径为,卫星的质量为,根据牛顿第二定律设地球表面的重力加速度,则以上两式联立解得:同步卫星距离地面的高度为同步卫星的运行方向与地球自转方向相同注意:赤道上随地球做圆周运动的物体与绕地球表面做圆周运动的卫星的区别在有的问题中,涉及到地球表面赤道上的物体和地球卫星的比较,地球赤道上的物体随地球自转做圆周运动的圆心与近地卫星的圆心都在地心,而且两者做匀速圆周运动的半径均可看作为地球的R,因此,有些同学就把两者混为一谈,实际上两者有着非常

31、显著的区别。地球上的物体随地球自转做匀速圆周运动所需的向心力由万有引力提供,但由于地球自转角速度不大,万有引力并没有全部充当向心力,向心力只占万有引力的一小部分,万有引力的另一分力是我们通常所说的物体所受的重力(请同学们思考:若地球自转角速度逐渐变大,将会出现什么现象?)而围绕地球表面做匀速圆周运动的卫星,万有引力全部充当向心力。赤道上的物体随地球自转做匀速圆周运动时由于与地球保持相对静止,因此它做圆周运动的周期应与地球自转的周期相同,即24小时,其向心加速度;而绕地球表面运行的近地卫星,其线速度即我们所说的第一宇宙速度,它的周期可以由下式求出: 求得,代入地球的半径R与质量,可求出地球近地卫星绕地球的运行周期T约为84min,此值远小于地球自转周期,而向心加速度远大于自转时向心加速度。

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 办公文档 > 其他范文


备案号:宁ICP备20000045号-2

经营许可证:宁B2-20210002

宁公网安备 64010402000987号