《燃煤工业锅炉脱硫脱硝工程设计方案.doc》由会员分享,可在线阅读,更多相关《燃煤工业锅炉脱硫脱硝工程设计方案.doc(111页珍藏版)》请在三一办公上搜索。
1、文档封面模板本页面为作品封面,下载文档后可自由编辑删除!精吕文档 工程程技类模版目录第一章 项目概况1第二章 工程设计12.1设计原则12.2设计范围22.3设计参数22.4设计标准22.5设计指标3第三章 设计依据43.1生产情况43.2相关技术标准43.3废气成分43.4废气性质43.5废气排放量53.5.1 燃煤量计算53.5.2烟气量的计算53.5.3 SO2的排放量63.5.4 锅炉及烟气的设计参数73.6废气处理系统排放标准7第四章 工艺路线84.1工艺流程84.1.1总工艺流程84.1.2脱硫工艺84.1.3脱硝工艺94.2废气处理工艺说明124.2.1脱硫处理工艺说明124.2
2、.2吸收塔设计计算134.2.3脱硝处理工艺说明16第五章 主要设备及构建物205.1主要设备205.2主要构建物21第六章 施工要求226.1施工要求226.2施工进度22第七章 环境保护、劳动卫生、工业安全、消防及排水部分237.1 环境保护237.2 劳动卫生及工业安全237.2.1 工业安全防护措施237.2.2劳动保护措施237.3 消防及排水部分24第八章 技术经济分析及主要技术经济指标248.1各原料消耗量241、石灰石用量242、原煤消耗量243、用电量见下表8-1248.2烟气净化系统年运行费用分析258.2.1运行费用估算258.2.2经济效益评估258.3主要技术经济指标
3、268.4投资估算268.5生产管理和人员编制27第九章 结论27第一章 项目概况绍兴某印染企业有自备20t/h燃煤工业锅炉一台,目前除配备布袋除尘器以外,尚无安装脱硫脱硝装置。今年中华人民共和国大气污染防治法和锅炉大气污染物排放标准(GB 13271-2014)颁布以后,各地环保局先后制订了当地大气污染防治2015年度实施方案,重点整治燃煤工业锅炉,要求工业锅炉限期完成脱硫脱硝改造。但到目前为止,中小型工业锅炉烟气污染治理还没有一种成熟的适用方法,烟气二氧化硫与氮氧化物几乎在直排,主要原因是现有的火电厂脱硫脱硝方法和工艺不适合工业锅炉。规定重点地区脱硫脱硝后烟气出口浓度为:SO2200mg/
4、Nm3,氮氧化物200mg/Nm3。根据新的环保要求编制20t/h燃煤工业锅炉脱硫脱硝装置设计方案,脱硫方法推荐石灰石-石膏法,脱硝方法可以是氨法或其它可行的方法。第二章 工程设计2.1设计原则(1)符合国家环境保护法律、法规和标准要求。(2)采用成熟可靠、技术先进的工艺,在保证处理效率的前提下,尽可能减少投资,降低成本。(3)脱硫脱硝工程的设计结合现场条件,力求使工艺流程和设备布置紧凑、合理,且不影响已建项目的正常使用。(4)脱硫后净烟气不加热,烟气尾气温度60-70 C。(5)脱硫吸收剂制浆方式采用外购石灰粉制成浆液。(6)脱硝产生的废水不能直接排放,通过污水处理站处理达标后排放。(7)采
5、取必要的措施确保脱硫脱硝系统不影响锅炉的正常运行。(8)在设备及管道运行中溢流、冲洗和清扫过程中产生的废水应收集在废水坑(箱)内,然后送至污水处理站处理,废水不得直接排放。2.2设计范围(1)脱硫脱硝剂制备系统包括从脱硫脱硝剂运输到厂后储存、制备、输送到脱硫脱硝系统等全套主辅设备。(2)脱硫脱硝系统除尘器出口烟道到烟囱之间脱硫脱硝主辅设备。(3)脱硫副产品处理系统处理脱硫灰渣副产品的主辅设备。2.3设计参数表2-1锅炉设计参数表序号项目参数序号项目参数1锅炉型号SZL20-1.25-AII8额定工作压力1.25MPa2额定蒸发量20t/h9额定蒸汽温度(C)1943除尘器出口烟气量(m3/h)
6、6000010设计热效率(%)834烟气温度()14011锅炉稳定安全运行工况(%)701005过剩空气系数1.6512烟囱高度(m)406除尘前粉尘排放浓度(mg/Nm3)2100013SO2排放浓度(mg/Nm3)20007除尘后粉尘排放浓度(mg/Nm3)5014NOx排放浓度(mg/Nm3)6002.4设计标准设计标准以锅炉大气污染物排放标准(GB 13271-2014)为依据,执行重点地区特别排放限值。见下表:2.5设计指标该型锅炉按类烟煤进行设计,燃料应符合GB/T18342-2009链条炉排锅炉用煤技术条件的规定。燃料的挥发份应25%,燃料颗粒度要求最好燃用分选过或含碎屑较少的煤
7、,燃料颗粒度一般在6-25mm,小于6毫米的不宜超过30%,最大的粒度不应大于30毫米。表2-2 GB/T18342-2009链条炉排锅炉用煤技术条件序号项目名称符号单位设计煤种校核煤种1工业分析收到基全水份Mt%14.4016.30干燥无灰基挥发份Vdaf%24.7117.21收到基灰份Aar%23.0824.63收到基低位发热值Qnet.arMJ/kg20992201392元素分析收到基碳份Car%50.5449.32收到基氢份Har%4.083.20收到基氧份Oar%6.184.86收到基氮份Nar%1.000.91收到基硫份Sar%0.720.783可磨性指数KVT11.371.374
8、煤灰熔融性变形温度DTC13501210软化温度STC13901270流动温度FTC15001420第三章 设计依据3.1生产情况此染料厂的工业锅炉参数是20 t/h锅炉耗煤量3.33 t/h,天工作时间24 h,年工作日为300 d。3.2相关技术标准本工程烟气脱硫系统所有设备、工具、配件的设计、制造、采购、施工、试验和材料原则上满足中国国家标准(GB系列)和电力行业标准(DL系列)及其它行业最新标准的要求。(1)锅炉大气污染物排放标准(GB 13271-2014)(2)火力发电厂设计技术规程DL5000-2000(3)火电厂烟气排放连续监测技术规范HJ/T 75-2001(4)工业炉窑大气
9、污染物排放标准GB9078-1996(5)污水综合排放标准GB 8978-1996(6)工业企业厂界噪声标准GB12348-2008(7)电气装置安装工程施工及验收规范GBJ232-82;(8)电力建设施工及验收技术规范(9)工业锅炉及炉窑湿法烟气脱硫工程技术规范HJ4622009(10)HJ/T75 火电厂烟气排放连续监测技术规范。(11)DL/T5196 火力发电厂烟气脱硫设计技术规程,规范。3.3废气成分 工业锅炉废气污染物主要包括锅炉烟气中的烟尘、二氧化硫、含氮氧化物、一氧化碳以及烟气黑度。这些污染物主要来自锅炉燃烧煤炭、燃油和燃气过程中的排放。对大气污染影响最为突出的就是烟尘、二氧化
10、硫以及NOx。3.4废气性质 工业锅炉中燃烧后产生的氮氧化物(NOx)是一种毒性很大的黄烟,燃烧产生的氮氧化物包括多种化合物,如一氧化二氮(N2O)、一氧化氮(NO)、二氧化氮(NO2)、三氧化二氮(N2O3)、四氧化二氮(N2O4)和五氧化二氮(N2O5)等。氮氧化物很不稳定,遇光、湿或热变成二氧化氮以及一氧化氮,一氧化氮又变成二氧化氮,若不经过治理通过烟囱排放到大气中,就会形成触目的棕(红)黄色烟雾,俗称“黄龙”,所以在众多废气治理中NOx难度最大,是污染大气的元凶。如果得不到有效控制不仅对操作人员的身体健康与厂区环境危害极大,而且随风飘逸扩散,对周边居民生活与生态环境造成公害。锅炉燃烧产
11、生的二氧化硫也是大气污染的主要污染物之一,二氧化硫(SO2)是无色透明的气体,有刺激性臭味。溶于水、乙醇和乙醚,在业态的情况下,二氧化硫比较稳定不活泼。气态的二氧化硫加热到2000 C不分解,不燃烧,与空气也不会组成爆炸性混合物,在火山爆发时也会喷出该气体,二氧化硫溶于水,会形成亚硫酸(酸雨的主要成分),若亚硫酸进一步被氧化,在催化剂的存在下,便会迅速高效生成硫酸。3.5废气排放量3.5.1 燃煤量计算已知1 t/h标煤产生6 t/h蒸汽,则20 t/h锅炉的耗煤量为:20/6=3.333 t/h锅炉年耗煤量:3.33324300=24000 t/h。3.5.2烟气量的计算1、以1kg煤燃烧为
12、基础,即燃料成分名称可燃成分含量()可燃成分的物质的量/mol理论需氧量/molC49.32 41.141.1H3.2168O4.861.519-1.519S0.780.2440.244N0.910.325-水分16.30-灰分24.63-(1)理论需氧量 41.1+8-1.519+0.244=47.825 mol(2)理论空气量 Va0干空气中N:O=3.78:1,则理论空气量Va0 = 47.825*4.78=228.604 mol/kg228.604*22.4/1000=5.120 m3/kg(3)理论烟气量Vfg0已知CO2的物质的量为41.1 mol,SO2的物质的量为0.244 m
13、ol,H2O的物质的量为25.056 mol,N2的物质的量为181.104 mol,则理论烟气量Vfg0= 41.1+0.244+25.056+181.104= 247.503 mol247.503*22.4/1000=5.544 m3/kg(4)实际烟气量Vfg 根据公式Vfg= Vfg0+ Va0(-1)式中: 空气过剩系数,为1.65;Vfg0 标准状态下理论空气量m3/kg; Vfg0 标准状态下理论烟气量m3/kg; 则实际烟气量Vfg=5.544+5.120*(1.65-1)= 8.873 m3/kg2、20 /h锅炉耗煤量,即3.333t煤燃烧的情况下:(1)在标准状况下的烟气
14、量VNVN=8.873*3.333*1000=29575.099 m3/h(2)在烟气出口温度T=140 C,压强P=125kPa下的烟气量VS根据理想气体状态方程,将该状态气体转化为锅炉烟气出口处温度及压力下的体积,则有即29575.099*101325/273= VS*125000/(273+140)VS= 36267.72 m3/h3.5.3 SO2的排放量SO2的排放量的计算根据公式式中:MSO2 脱硫前烟气中的SO2含量, t/h;K 燃煤中的含硫量燃烧后氧化成SO2的份额;Bg 锅炉BMCR负荷时的燃煤量,t/h;so2 除尘器的脱硫效率;q4 锅炉机械未完全燃烧的热损失,;Sar
15、 燃料煤的收到基硫分,。表 3-1 除尘器的脱硫效率除尘器形式干式除尘器洗涤式水膜除尘器文丘里水膜除尘器SO2 ()0515已知除尘器是布袋除尘器,属于干式除尘器,SO2取0%,则SO2的浓度 =43.758/29575.10 =1.479*10-3 kg/Nm3= 1479.556 mg/Nm3脱硫效率=1-200/1479.556=86.48%3.5.4 锅炉及烟气的设计参数根据设计依据,锅炉及烟气的设计初始条件见下表3-2表 3-2 锅炉及烟气的设计初始条件项目参数锅炉煤耗量20 t/h燃煤含硫量15.6 g/kg煤标况下锅炉烟气流量29575.10 Nm3/h实际锅炉烟气流量36267
16、.72 m3/h烟气温度140 C标况下SO2排放浓度1479.556 mg/Nm3标况下NOx排放浓度600 mg/Nm3年运行时间7200 h3.6废气处理系统排放标准(1)GB16297-1996 大气污染物综合排放标准(2)GB13271-2001 锅炉大气污染物排放标准第四章 工艺路线4.1工艺流程4.1.1总工艺流程针对20t/h的燃煤工业锅炉,采用以下流程对锅炉燃煤产生的废气进行脱硫脱硝。见图4-1图4-1脱硝脱硫总工艺流程图4.1.2脱硫工艺石灰石石膏湿法脱硫工艺是目前世界上应用比较广泛和较成熟的工艺。该工艺以石灰石浆液作为吸收剂,通过石灰石浆液在吸收塔内对烟气进行洗涤,发生反
17、应,以去除烟气中的SO2,反应产生的亚硫酸钙通过强制氧化生成含两个结晶水的硫酸钙(石膏)。该工艺特点是:圆柱形空塔,吸收剂与烟气在塔内逆向流动,吸收和氧化在同一个塔内进行,塔内设置喷淋层,氧化方式采用强制氧化。总的来说石灰(石灰石)石膏法脱硫工艺为湿式脱硫工艺,工艺流程简单、技术先进又可靠,是目前国内外烟气脱硫应用最广泛的脱硫工艺。锅炉烟气通过增压风机、降温后进入吸收塔。在吸收塔内烟气向上流动且被向下流动的循环浆液以逆流方式洗涤。循环浆液则通过喷浆层内设置的喷嘴喷射到吸收塔中,以便脱除SO2、SO3,与此同时在“强制氧化工艺”的处理下反应的副产物被导入的空气氧化为石膏(CaSO42H2O),并
18、消耗作为吸收剂的石灰石。循环浆液通过浆液循环泵向上输送到喷淋层中,通过喷嘴进行雾化,可使气体和液体得以充分接触。每个泵通常与其各自的喷淋层相连接,即通常采用单元制。在吸收塔中,石灰石与二氧化硫反应生成石膏,这部分石膏浆液通过石膏浆液泵排出,进入石膏脱水系统。脱水系统主要包括石膏水力旋流器(作为一级脱水设备)、浆液分配器和真空皮带脱水机。经过净化处理的烟气流经两级除雾器除雾,在此处将清洁烟气中所携带的浆液雾滴去除。同时按特定程序不时地用工艺水对除雾器进行冲洗。进行除雾器冲洗有两个目的,一是防止除雾器堵塞,二是冲洗水同时作为补充水,稳定吸收塔液位。在吸收塔出口,烟气一般被冷却到4655 C左右,且
19、为水蒸气所饱和。最后,烟气通过烟道进入下一步脱硝的工艺流程。下图4-2是脱硫工艺设备设计流程图。图4-2脱硫工艺设备流程图4.1.3脱硝工艺此烟气脱硝工艺采用的是湿法烟气脱硝工艺,主要是以雾态的氧化性溶液及雾态的碱性溶液对烟气进行脱硝。此工艺采用的烟气增压湍流-是对脱硫后的锅炉烟气实施增压后且使其呈现出湍流的状态,增压湍流状态的烟气有利于与其后各工艺过程的实施。在氧化反应的阶可以使用湍流状态的烟气与雾态的氧化液充分混合且进行氧化反应,这是脱硝过程中很关键的工序。此项目所采用的工艺,在烟气经过氧化反应区雾态氧化液,能够自然聚集成雾滴,继而对雾滴进行收集后又回流到氧化液池中,这样氧化液池中的氧化液
20、通过初管道、氧化液循环泵、后管道、喷嘴,使液态的氧化液呈现出雾态的状态,从而构成氧化液从液态到雾态、再从雾态到液态的循环,同时氧化液的浓度、pH值均在氧化液池中进行,实施方便,从而可以保持氧化液始终处于有效状态,有利于对烟气的反应的发生。在碱液吸收部分,经过氧化反应的烟气在经过雾态的碱液进行充分化学反应,这是脱硝过程的另外一个重要的工序,在气体经过碱液吸收剂的时候,反应完成后的雾态碱液,能够自然聚集成雾滴,继而对雾滴进行收集后又回流到碱液池中,这样子碱液池中的碱液通过前管道、碱液循环泵、尾管道、碱液喷嘴、使碱液呈现出雾态的状态,从而构成了碱液从液态到雾态、再从雾态到液态的循环,同时碱液的浓度、
21、pH均可以在碱液池中进行调节,实施很方便,从而可以保持碱液始终处于有效的状态,有利于对烟气的化学反应。在除雾区,经过碱液吸收后的气体在上升过程中遇到折板形状的除雾器的阻挡,使烟气中携带的雾气凝结为液体,对经过除雾的烟气进行排放,在除雾一段时间后定时开启水喷嘴对折板形状的除雾器进行清洗降温,清楚除雾器上的杂质。在此湿法脱销工艺中,所使用的氧化剂是次氯酸钙,氧化液的浓度为0.3%5%、pH值为3.55.7,所述的氧化液与烟气的比例为(28):1;所述的碱液中的吸收剂为氢氧化钠,所述碱液浓度为0.1%5%、pH值为811,所述的碱液与烟气的比例为(28):1,所述的烟气与氧化液及碱液均在不结冰的常温
22、常压下的反应时间为210秒。4-3脱硝工艺流程图4-4脱硝工艺设备设计图4.2废气处理工艺说明4.2.1脱硫处理工艺说明(1)石灰石石膏法烟气脱硫工艺的化学原理如下:烟气中的二氧化硫溶解水,生成亚硫酸并离解成氢离子和HSO3-离子;烟气中的氧和氧化风机送入的空气将溶液中HSO3-氧化成SO42-;吸收剂中的碳酸钙在一定条件下于溶液中离解出Ca2+;在吸收塔内,溶液中的SO42-、Ca2+及水反应生成(CaSO42H2O)。化学反应式分别如下:SO2H2OH2SO3H+HSO3-H+HSO3-1/2O22H+SO42-CaCO32H+H2OCa2+2H2OCO2Ca2+SO42-2H2OCaSO
23、42H2O(2)烟气系统烟气系统包括烟道、烟气挡板、密封风机等关键设备。吸收塔入口烟道及出口至挡板的烟道,烟气温度较低,烟气含湿量较大,容易对烟道产生腐蚀,需进行防腐处理。烟气挡板是脱硫装置进入和退出运行的重要设备,分为FGD主烟道烟气挡板和旁路烟气挡板。前者安装在FGD系统的进出口,它是由双层烟气挡板组成,当关闭主烟道时,双层烟气挡板之间连接密封空气,以保证FGD系统内的防腐衬胶等不受破坏。旁路挡板安装在原锅炉烟道的进出口。当FGD系统运行时,旁路烟道关闭,这时烟道内连接密封空气。旁路烟气挡板设有快开机构,保证在FGD系统故障时迅速打开旁路烟道,以确保锅炉的正常运行。(3)吸收系统吸收系统的
24、主要设备是吸收塔,它是FGD设备的核心装置,系统在塔中完成对SO2、SO3等有害气体的吸收。湿法脱硫吸收塔有许多种结构,如填料塔、湍球塔、喷射鼓泡塔、喷淋塔等等,其中喷淋塔因为具有脱硫效率高、阻力小、适应性、可用率高等优点而得到较广泛的应用,因而目前喷淋塔是石灰石/石膏湿法烟气脱硫工艺中的主导塔型。喷淋层设在吸收塔的中上部,吸收塔浆液循环泵对应各自的喷淋层。每个喷淋层都是由一系列喷嘴组成,其作用是将循环浆液进行细化喷雾。一个喷淋层包括母管和支管,母管的侧向支管成对排列,喷嘴就布置在其中。喷嘴的这种布置安排可使吸收塔断面上实现均匀的喷淋效果。吸收塔循环泵将塔内的浆液循环打入喷淋层,为防止塔内沉淀
25、物吸入泵体造成泵的堵塞或损坏及喷嘴的堵塞,循环泵前都装有网格状不锈钢滤网(塔内)。单台循环泵故障时,FGD系统可正常进行,若全部循环泵均停运,FGD系统将保护停运,烟气走旁路。氧化空气系统是吸收系统内的一个重要部分,氧化空气的功能是保证吸收塔反应池内生成石膏。氧化空气注入不充分将会引起石膏结晶的不完善,还可能导致吸收塔内壁的结垢,因此,对该部分的优化设置对提高系统的脱硫效率和石膏的品质显得尤为重要。吸收系统还包括除雾器及其冲洗设备,吸收塔内最上面的喷淋层上部设有二级除雾器,它主要用于分离由烟气携带的液滴,采用阻燃聚丙烯材料制成。(4)石膏脱水石膏脱水系统包括水力旋流器和真空皮带脱水机等关键设备
26、。水力旋流器作为石膏浆液的一级脱水设备,其利用了离心力加速沉淀分离的原理,浆液流切进入水力旋流器的入口,使其产生环形运动。粗大颗粒富集在水力旋流器的周边,而细小颗粒则富集在中心。已澄清的液体从上部区域溢出(溢流);而增稠浆液则在底部流出(底流)。真空皮脱水机将已经水力旋流器一级脱水后的石膏浆液进一步脱水至含固率达到90%以上。4.2.2吸收塔设计计算脱硫吸收系统包括循环泵、管道阀门及热控仪表系统、喷淋组件及喷嘴或旋流板。吸收液循环泵符合对”泵”的基本要求外,并满足循环泵及驱动电机适应户外露天布置的要求。脱硫塔循环系统的设计要求是使喷淋层的布置达到所要求的喷淋浆液覆盖率,使吸收溶液与烟气充分接触
27、,从而保证在适当的液/气比(L/G)下可靠地实现所要求的脱硫效率。1、 吸收塔内径(1)吸收塔进口烟气量Va (m3/s)计算该数值已经由之前的计算中给出,烟气进口量为:29575.10 Nm3/h =8.215 Nm3/s然而,该计算数值实质上仅仅指烟气在喷淋塔进口处的体积流量,而在喷淋塔内延期温度会随着停留时间的增大而降低,根据PVT气体状态方程,要算出瞬间数值是不可能的,因此只能算出在喷淋塔内平均温度下的烟气平均体积流量。本设计中取吸收塔入口烟气温度为100 C,取吸收塔出口烟气温度为50 C,则塔内的平均操作温度为75 C,则此条件下的烟气流量为:V= 8.215348/273=10.
28、074 m3/s(2)喷淋塔直径的计算吸收塔直径D可由吸收塔出口实际烟气体积流量和烟气流速确定。烟气速度增大,传质速率系数增大,体积有效传质面积增大。但烟气停留时间缩短,要求增大塔高。烟气的流行速度影响了脱硫效率。合适的流速范围为34.5 m/s。本设计方案选取烟气流速u=3 m/s。吸收塔直径根据下列公式计算:V=Au=(D/2)2u式中,V为烟气体积流量m3/su为烟气流速m/sD为吸收塔直径 mA为烟气过流断面面积m3/s此喷淋塔的内径为D=2=2.068 m,取2.2 m。2、 吸收塔高度喷淋塔塔高设计吸收区的高度一般指烟气进口水平中心线到喷淋层中心线的距离。吸收区高度一般为515m,
29、烟气接触反应时间一般为25s。为了保证较高的脱硫效率,设计接触反应时间为2s,则吸收区高度为: h=ut=3*2=6m吸收塔喷淋层的喷嘴一般分为切向、轴向和旋转3种型式,本设计中采用轴向式喷嘴,主要原因是这种喷嘴喷出的液滴粒度较小,而且性价比较高。吸收区一般设置36个喷淋层,每个喷淋层都装有多个雾化喷嘴,交叉布置,覆盖率达200%300%。本设计中脱硫效率要求在86%以上,同时考虑成本问题,故设计中设置3个喷淋层。喷淋层间距一般为1.2 2 m,为了便于检修和维护,层间距设为1.5m。入口烟道到第一层喷淋层的距离一般为23.5 m,本设计为:h2=6-1.5*(3-1)=3 m表4-1 吸收塔
30、高度参考表项目范围吸收塔入口宽度与直径之比/ %6090入口烟道到第一层喷淋层的距离/ m23.5喷淋层间距/ m1.22最顶端喷淋层到除雾器的距离/ m1.22除雾器高度/ m2.03.0除雾器到吸收塔出口的距离/ m0.51吸收塔出口宽度与直径之比/ %601003、 除雾器设计除雾器通常安装在吸收塔的顶部,也可安装在吸收塔后的烟道上。其作用是捕集脱硫后洁净烟气中的水分,尽可能地保护其后的管路及设备不受腐蚀与沾污。一般要求脱硫后烟气中的残余水分不超过100mg/m3。在吸收塔中,由上下两级除雾器及冲水系统构成。湿法烟气脱硫塔采用的除雾器类型主要有折流板除雾器与旋流板除雾器两种。为了适应塔内
31、较高的烟气流速,达到较高的除雾效率,本设计选用折流板除雾器中的屋顶式除雾器。取最后一层喷淋层到除雾器的距离为1.2m,除雾器到吸收塔出口的距离0.7m。除雾器的高度为2.5m,采用2层除雾,则除雾区的总高度为1.2+2.5*2+0.7=6.9m。4、 浆液池设计浆池容量V1的计算表达式: V1=(L/G) VNt1式中:L/G液气比。液气比是指吸收剂石灰石液浆循环量与烟气流量的比值(L/m3)。如果增大液气比,则推动力增大,脱硫效率增大。但是石灰石浆液停留时间减少,且循环泵液循环量增大,运行成本增大。根据经验,石灰石法喷淋塔中的液气比一般为1525L/m3。本工艺选取15L/m3。V烟气标准状
32、态湿态容积,m3/h;V=10.074 m3/s; t1浆液停留时间,48min,取t1=5min=300s。可得喷淋塔浆液池体积:V1=(L/G) VNt1=15*10.074*300/1000=45.33 m3。选取浆液池内径略大于吸收区内径,内径D2 =2.5 m。根据V计算浆液池高度h3=4V1/(D22)=445.33/(3.142.52)=9.235 m,取10 m。烟气进口底部至浆液面的距离一般0.81.2m,取1.0m。5、 烟气进出口设计一般希望进气在塔内能够分布均匀,且烟道呈正方形,故高度尺寸取得较小,但宽度不宜过大,否则影响稳定性。取入口宽度与直径之比0.6,出口宽度与直
33、径之比取0.7,则入口宽度:L入=2.20.6=1.32 m出口宽度:L出=2.20.7=1.54 m烟气流量为:V入= 8.215373/273=11.22 m3/sV出= 8.215323/273=9.72 m3/s进出口烟气流速一般为1218 m/s,本设计均取15m/s,已知入口烟气流量为265.91 m3/s,出口烟气流量为230.28m3/s。由V=uhL,得入口高度:h入=11.22/ (151.32)=0.57 m;出口高度:h出=9.72/ (151.54)=0.49 m。6、 喷淋塔总高度因此喷淋塔总高度为H= 6+6.9+10+0.57+0.49+1.0=24.96m4.
34、2.3脱硝处理工艺说明1、工程实施方式步骤:烟气增压湍流,对脱硫后的锅炉烟气实施增压后且使其呈现出湍流的状态。氧化反应,呈现出湍流状态的烟气经过雾态的氧化液且使二者充分混合并进行氧化反应,经过氧化反应的雾态氧化液自然聚集成雾滴后收集在氧化液池中。碱性吸收及吸收,经过氧化反应的烟气在经过雾态的碱液且使二者充分混合并且进行化学反应完成碱性吸收剂吸收,经过碱性吸收剂吸收,经过碱性吸收的雾态碱液自然聚集成雾滴后收集在碱液池中。烟气除雾,经过碱性吸收剂吸收的烟气,在上升过程中遇到折板形状除雾器的阻挡,使烟气中携带的雾气凝结为液体,对经过除雾的烟气进行排放。除雾器清洗,定时开启水喷嘴对折板形状的除雾器进行
35、清洗,以此清除除雾器上的杂质。此工艺是湿法脱硝工艺所说的氧化液的浓度、pH值均在氧化液池中进行调解,碱液的浓度、pH均在碱液池中进行调节。2、进口烟气量计算由设计参数可知,锅炉排放NOx浓度为600 mg/Nm3,最初排放的NOx中NO约占95%,但是,NO在大气中极易与空气中的氧发生反应,生成NO2,故烟气中NOx通过除尘器、脱硫塔后,普遍以NO2的形式存在。故NO2的浓度为:600*95%*46/30+600*5%=904 mg/Nm3同时烟气进口量已经由之前的设计参数中给出,为:29575.10 Nm3/h =8.215 Nm3/s然而,该计算数值实质上仅仅指烟气在喷淋塔进口处的体积流量
36、,而在喷淋塔内延期温度会随着停留时间的增大而降低,根据PVT气体状态方程,要算出瞬间数值是不可能的,因此只能算出在喷淋塔内平均温度下的烟气平均体积流量。已知入塔温度为50 C,设出塔温度为20 C,则塔内的平均操作温度为35 C,则此条件下的烟气流量为:V= 8.215308/273=9.27 m3/s。3、塔直径的计算吸收塔直径D可由吸收塔出口实际烟气体积流量和烟气流速确定。烟气速度增大,传质速率系数增大,体积有效传质面积增大。但烟气停留时间缩短,要求增大塔高。烟气的流行速度影响了脱硫效率。合适的流速范围为34.5 m/s。本设计方案选取烟气流速u=3 m/s。吸收塔直径根据下列公式计算:
37、V=Au=(D/2)2u式中,V为烟气体积流量m3/s;u为烟气流速m/s;D为吸收塔直径 m;A为烟气过流断面面积m3/s。此喷淋塔的内径为D=2=1.98 m,取2.1 m。4、 塔高设计 喷淋塔吸收区高度H1含有NOx的烟气通过喷淋塔将此过程中塔内总的NOx吸收量平均到吸收区高度内的塔内容积中,即为吸收塔的平均容积负荷平均容积吸收率,以表示。计算表达式如下=3600 在喷淋塔操作温度35下,烟气流速为u=4.0m/s、脱硝效率=66.67%。前面已经求得烟气NO2的浓度为904 mg/Nm3,而原来烟气的流量换算成标准状态时(设为Va),已经求得 Va=30374.5Nm3/h=8.43
38、7Nm3/s故在标准状态下、单位时间内每立方米烟气中含有NO2质量为 =8.437904 mg/ m3=7.627g V=7.627/46*22.4=3.714 L/s=0.00371 m3/s则根据理想气体状态方程,在标准状况下,体积分数和摩尔分数比值相等 故y=0.00371/7.627=0.049%又烟气流速u=4.0m/s,y=0.049%. =66.67%,t=95总结已经有的经验,容积吸收率范围在5.5-6.5 Kg/(m3s)之间取=6 kg/(m3s)代入(1)式可得 H1=3600x46/22.4x273/(273+95)x4x0.049%x66.67% 故吸收区高度H1=7
39、.17m 喷淋塔浆液池高度H2喷淋塔浆液池体积V1=(L/G) VNt1=15.010.7518010-3=29.025 m3 VN=Vg=10.75m3/s, T1=2-6 min,取t1=3.0min=180s 选取浆液池内径等于吸收区内径,内径D2= D=2.0m 而V1=0.253.14D22H2=0.253.141.52H2 所以H2=9.24m 喷淋塔除雾区高度H3吸收塔均应装备除雾器,在正常运行状态下除雾器出口烟气中的雾滴浓度应该不大于75mg/m3 。除雾器一般设置在吸收塔顶部(低流速烟气垂直布置)或出口烟道(高流速烟气水平布置),通常为二级除雾器。除雾器设置冲洗水,间歇冲洗冲
40、洗除雾器。塔顶设置除雾器,控制尾气中氨的浓度7mg/m3。为了使除雾器的雾滴去除率达到99.75% 以上,根据吸收塔出口端(即除雾器入口端)雾滴颗粒直径的实际分布状况,直径大于17m的雾滴颗粒必须100完全去除。综上,设计除雾区的最终高度确定为1.0m,即H3=1.0 m喷淋塔烟气进口高度H4根据工艺要求,进出口流速(一般为12m/s-30m/s)确定进出口面积,一般希望进气在塔内能够分布均匀,且烟道呈正方形,故高度尺寸取得较小,但宽度不宜过大,否则影响稳定性.因此取进口烟气流速为20m/s,而烟气流量为10.75m3/s,可得H4220 m/s =10.75 m3/s 所以H4=0.73mH
41、4总=20.73=1.46m(包括进口烟气和净化烟气进出口烟道高度)综上所述,喷淋塔的总高为: H= H1+H2+H3+H4=7.17+9.24+1+1.46=18.87m,取整值20m。第五章 主要设备及构建物5.1主要设备 脱硫及硫酸铵回收系统主要设备见下表5-15-1主要设备表序号设 备 名 称 及 规 格设备型号单位数量材料一、系统非标设备1脱硫塔1000台1特种玻璃钢爬梯、平台套1Q235B循环喷淋层层3FRP高效除雾器层2PP除雾器冲洗水喷淋层层33储氨罐台1Q2354缓冲槽座1Q235+玻璃鳞片5旋流器组 套1聚氨酯二、电动设备1循环泵 流量50m3/h,扬程20m台4高分子量聚
42、乙烯三开一备4KW2母液泵 流量50m3/h,扬程20m台2高分子量聚乙烯一开一备11KW3浆液泵 流量15m3/h,扬程30m台2高分子量聚乙烯一开一备5.5KW4返回泵 流量50m3/h,扬程20m台1高分子量聚乙烯11KW5滤液泵 流量15m3/h,扬程30m台2高分子量聚乙烯一开一备5.5KW6搅拌器附:电动机N=5.5kw,1450r/min;台2钢衬胶减速机:23:17干燥机台1接触物料为316L蒸汽加热器台1螺旋加料器台1附:电动机N=0.75干燥主机台1一级旋风分离器台1附:电动机N=0.75kw文丘里水膜除尘器台1引风机台1附:电动机N=22kw其它部件批18离心机 转速:1-1400r/min台2316L附:电动机N=22kw9罗茨风机 升压:80KPa 风量:25m3/min 台2附:电机功率N=55KW一开一备10自动称量包装机台1功率2kw三、电气、仪表控制系统1电气控制 套1 2电线、电缆及附件 若干 5.2主要构建物主要构筑物明细见下表5-2表5-2主要土建及构筑物表序号设 备 名 称 及 规 格设备型号单位数量材料1脱硫塔基础座1混凝土结构2循环泵基础座43母液泵基础座24浆液泵基础座25返回泵基