《最全版全国各省高考物理试题分类汇编(下).doc》由会员分享,可在线阅读,更多相关《最全版全国各省高考物理试题分类汇编(下).doc(67页珍藏版)》请在三一办公上搜索。
1、目录1、电磁感应.22、磁场.123、力学实验.254、电学实验.345、选修3-3.456、选修3-4.507、选修3-5.611、电磁感应18(2012福建卷)如图甲,一圆形闭合铜环由高处从静止开始下落,穿过一根竖直悬挂的条形磁铁,铜环的中心轴线与条形磁铁的中轴始终保持重合。若取磁铁中心O为坐标原点,建立竖直向下正方向的x轴,则图乙中最能正确反映环中感应电流i随环心位置坐标x变化的关系图像是答案:B19(2012全国新课标).如图,均匀磁场中有一由半圆弧及其直径构成的导线框,半圆直径与磁场边缘重合;磁场方向垂直于半圆面(纸面)向里,磁感应强度大小为B0.使该线框从静止开始绕过圆心O、垂直于
2、半圆面的轴以角速度匀速转动半周,在线框中产生感应电流。现使线框保持图中所示位置,磁感应强度大小随时间线性变化。为了产生与线框转动半周过程中同样大小的电流,磁感应强度随时间的变化率的大小应为A. B. C. D. 答案C解析匀速转动时感应电动势与磁场变化时感应电动势相同即可。匀速转动时感应电动势式中R为半径。磁场变化时感应电动势。二者相等可得答案。25(2012上海卷) 正方形导线框处于匀强磁场中,磁场方向垂直框平面,磁感应强度随时间均匀增加,变化率为k。导体框质量为m、边长为L,总电阻为R,在恒定外力F作用下由静止开始运动。导体框在磁场中的加速度大小为_,导体框中感应电流做功的功率为_。答案:
3、F/m,k2L4/R,19(2012北京高考卷)物理课上,老师做了一个奇妙的“跳环实验”如图,她把一个带铁芯的线圈L、开关S和电源用导线连接起来后,将一金属套环置于线圈L上,且使铁芯穿过套环,闭合开关S的瞬间,套环立刻跳起某同学另找来器材再探究此实验他连接好电路,经重复实验,线圈上的套环均未动,对比老师演示的实验,下列四个选项中,导致套环未动的原因可能是 A线圈接在了直流电源上B电源电压过高C所选线圈的匝数过多D所用套环的材料与老师的不同答案:D6(2012海南卷).如图,EOF和为空间一匀强磁场的边界,其中EO,FO,且EOOF;为EOF的角平分线,间的距离为l;磁场方向垂直于纸面向里。一边
4、长为l的正方形导线框沿方向匀速通过磁场,t=0时刻恰好位于图示位置。规定导线框中感应电流沿逆时针方向时为正,则感应电流i与实践t的关系图线可能正确的是答案:A20(2012山东卷).如图所示,相距为L的两条足够长的光滑平行金属导轨与水平面的夹角为,上端接有定值电阻,匀强磁场垂直于导轨平面,磁感应强度为B。将质量为m的导体棒由静止释放,当速度达到时开始匀速运动,此时对导体棒施加一平行于导轨向下的拉力,并保持拉力的功率为P,导体棒最终以的速度匀速运动。导体棒始终与导轨垂直且接触良好,不计导轨和导体棒的电阻,重力加速度为g,下列选项正确的是ABC当导体棒速度达到时加速度为D在速度达到以后匀速运动的过
5、程中,R上产生的焦耳热等于拉力所做的功答案:AC20(2012四川卷)半径为a右端开小口的导体圆环和长为2a的导体直杆,单位长度电阻均为R0。圆环水平固定放置,整个内部区域分布着竖直向下的匀强磁场,磁感应强度为B。杆在圆环上以速度v平行于直径CD向右做匀速直线运动,杆始终有两点与圆环良好接触,从圆环中心O开始,杆的位置由确定,如图所示。则 A=0时,杆产生的电动势为2Bav B=时,杆产生的电动势为 C=0时,杆受的安培力大小为 D=时,杆受的安培力大小为答案:AD20(2012全国新课标).如图,一载流长直导线和一矩形导线框固定在同一平面内,线框在长直导线右侧,且其长边与长直导线平行。已知在
6、t=0到t=t1的时间间隔内,直导线中电流i发生某种变化,而线框中感应电流总是沿顺时针方向;线框受到的安培力的合力先水平向左、后水平向右。设电流i正方向与图中箭头方向相同,则i随时间t变化的图线可能是答案A解析要求框中感应电流顺时针,根据楞次定律,可知框内磁场要么向里减弱(载流直导线中电流正向减小),要么向外增强(载流直导线中电流负向增大)。线框受安培力向左时,载流直导线电流一定在减小,线框受安培力向右时,载流直导线中电流一定在增大。故答案选A。21(2012重庆卷)如题21图所示,正方形区域MNPQ垂直纸面向里的匀强磁场。在外力作用下,一正方形闭合刚性导线框沿QN方向匀速运动,t=0时刻,其
7、四个顶点、恰好在磁场边界中点。下列图象中能反映线框所受安培力f的大小随时间t变化规律的是答案:B26(2012上海卷)(4分)为判断线圈绕向,可将灵敏电流计G与线圈L连接,如图所示。已知线圈由a端开始绕至b端;当电流从电流计G左端流入时,指针向左偏转。(1)将磁铁N极向下从线圈上方竖直插入L时,发现指针向左偏转。俯视线圈,其绕向为_(填“顺时针”或“逆时针”)。(2)当条形磁铁从图中虚线位置向右远离L时,指针向右偏转。俯视线圈,其绕向为_(填“顺时针”或“逆时针”)。 答案: (1)顺时针,(2)逆时针,11(2012天津卷).如图所示,一对光滑的平行金属导轨固定在同一水平面内,导轨间距l=0
8、.5m,左端接有阻值R=0.3的电阻,一质量m=0.1kg,电阻r=0.1的金属棒MN放置在导轨上,整个装置置于竖直向上的匀强磁场中,磁场的磁感应强度B=0.4T,棒在水平向右的外力作用下,由静止开始以a=2m/s2的加速度做匀加速运动,当棒的位移x=9m时撤去外力,棒继续运动一段距离后停下来,已知撤去外力前后回路中产生的焦耳热之比Q1:Q2=2:1,导轨足够长且电阻不计,棒在运动过程中始终与导轨垂直且两端与导轨保持良好接触,求(1)棒在匀加速运动过程中,通过电阻R的电荷量q(2)撤去外力后回路中产生的焦耳热Q2(3)外力做的功WF11(18分)解析:(1)棒匀加速运动所用时间为t,有 s 根
9、据法拉第电磁感应定律和闭合电路的欧姆定律求电路中产生的平均电流为 A 根据电流定义式有 C(2)撤去外力前棒做匀加速运动根据速度公式末速为 m/s撤去外力后棒在安培力作用下做减速运动,安培力做负功先将棒的动能转化为电能,再通过电流做功将电能转化为内能,所以焦耳热等于棒的动能减少。有 J(3)根据题意在撤去外力前的焦耳热为J 撤去外力前拉力做正功、安培力做负功(其大小等于焦耳热Q1)、重力不做功共同使棒的动能增大,根据动能定理有 则 J35(2012广东卷).(18分)如图17所示,质量为M的导体棒ab,垂直放在相距为l的平行光滑金属轨道上。导轨平面与水平面的夹角为,并处于磁感应强度大小为B、方
10、向垂直与导轨平面向上的匀强磁场中,左侧是水平放置、间距为d的平行金属板,R和Rx分别表示定值电阻和滑动变阻器的阻值,不计其他电阻。(1)调节Rx=R,释放导体棒,当棒沿导轨匀速下滑时,求通过棒的电流I及棒的速率v。(2)改变Rx,待棒沿导轨再次匀速下滑后,将质量为m、带电量为+q的微粒水平射入金属板间,若它能匀速通过,求此时的Rx。35.(18分) 解:(1)当Rx=R棒沿导轨匀速下滑时,由平衡条件安培力解得感应电动势 电流解得 (2)微粒水平射入金属板间,能匀速通过,由平衡条件棒沿导轨匀速,由平衡条件 金属板间电压解得33(2012上海卷)(14分)如图,质量为M的足够长金属导轨abcd放在
11、光滑的绝缘水平面上。一电阻不计,质量为m的导体棒PQ放置在导轨上,始终与导轨接触良好,PQbc构成矩形。棒与导轨间动摩擦因数为m,棒左侧有两个固定于水平面的立柱。导轨bc段长为L,开始时PQ左侧导轨的总电阻为R,右侧导轨单位长度的电阻为R0。以ef为界,其左侧匀强磁场方向竖直向上,右侧匀强磁场水平向左,磁感应强度大小均为B。在t0时,一水平向左的拉力F垂直作用于导轨的bc边上,使导轨由静止开始做匀加速直线运动,加速度为a。(1)求回路中感应电动势及感应电流随时间变化的表达式;(2)经过多少时间拉力F达到最大值,拉力F的最大值为多少?(3)某一过程中回路产生的焦耳热为Q,导轨克服摩擦力做功为W,
12、求导轨动能的增加量。答案:(1)感应电动势为EBLv,导轨做初速为零的匀加速运动,vat,EBLat,sat2/2,感应电流的表达式为IBLv/R总BLat/(R2R0at2/2)BLat/(RR0at2),(2)导轨受安培力FABILB2L2at/(RR0at2),摩擦力为FfmFNm(mgBIL)mmgB2L2at/(RR0at2),由牛顿定律FFAFfMa,FMaFAFfMammg(1m)B2L2at/(RR0at2),上式中当R/tR0at即t时外力F取最大值,F maxMammg(1m)B2L2,(3)设此过程中导轨运动距离为s,由动能定理W合DEk,摩擦力为Ffm(mgFA),摩擦
13、力做功为WmmgsmWAmmgsmQ,s,DEkMas(WmQ),13(2012江苏卷)(15分)某兴趣小组设计一种发电装置,如图所示,在磁极与圆柱状铁芯之间形成的两磁场区域的圆心角均为,磁场均沿半径方向,匝数为N的矩形线圈abcd边长ab=cd=l、bc=ad=2l,线圈以角速度绕中心轴匀速转动,bc与ad边同时进入磁场,在磁场中,两条边的经过处的磁感应强度大小均为B,方向始终与两条边的运动方向垂直,线圈的总电阻为r,外接电阻为R,求(1)线圈切割磁感线时,感应电动势的大小Em(2)线圈切割磁感线时,bc边所受安培力的大小F(3)外接电阻上电流的有效值I【答案】(1)、边的运动速度 , 感应
14、电动势,解得。(2)电流, 安培力 ,解得 .(3)一个周期内,通电时间,上消耗的电能,且解得。25(2012浙江卷)(22分)为了提高自行车夜间行驶的安全性,小明同学设计了一种“闪烁”装置。如图所示,自行车后轮由半径r1=5.0l0-2m的金属内圈、半径r2=0.40m的金属外圈和绝缘辐条构成。后轮的内、外圈之间等间隔地接有4根金属条,每根金属条的中间均串联有一电阻值为R的小灯泡。在支架上装有磁铁,形成了磁感应强度B=0.l0T、方向垂直纸面向外的“扇形”匀强磁场,其内半径为r1,外半径为r2、张角=,后轮以角速度=2rad/s相对于转轴转动。若不计其它电阻,忽略磁场的边缘效应。(1)当金属
15、条ab进入“扇形”磁场时,求感应电动势E,并指出曲上的电流方向;(2)当金属条ab进入“扇形”磁场时,画出“闪烁”装置的电路图; (3)从金属条ab进入“扇形”磁场时开始,经计算画出轮子转一圈过程中,内圈与外圈之间电势差Uab随时间t变化的Uab-t图象;(4)若选择的是“1.5V、0.3A”的小灯泡,该“闪烁”装置能否正常工作?有同学提出,通过改变磁感应强度B、后轮外圈半径r2、角速度 和张角等物理量的大小,优化前同学的设计方案,请给出你的评价。25题答案:22(2012福建卷).(20分)如图甲,在圆柱形区域内存在一方向竖直向下、磁感应强度大小为B的匀强磁场,在此区域内,沿水平面固定一半径
16、为r的圆环形光滑细玻璃管,环心0在区域中心。一质量为m、带电量为q(q0)的小球,在管内沿逆时针方向(从上向下看)做圆周运动。已知磁感应强度大小B随时间t的变化关系如图乙所示,其中。设小球在运动过程中电量保持不变,对原磁场的影响可忽略。(1)在t=0到t=T0 这段时间内,小球不受细管侧壁的作用力,求小球的速度大小;(2)在竖直向下的磁感应强度增大过程中,将产生涡旋电场,其电场线是在水平面内一系列沿逆时针方向的同心圆,同一条电场线上各点的场强大小相等。试求t=T0 到t=1.5T0 这段时间内:细管内涡旋电场的场强大小E;电场力对小球做的功W。22答案:16(2012海南卷).如图,ab和cd
17、是两条竖直放置的长直光滑金属导轨,MN和是两根用细线连接的金属杆,其质量分别为m和2m。竖直向上的外力F作用在杆MN上,使两杆水平静止,并刚好与导轨接触;两杆的总电阻为R,导轨间距为。整个装置处在磁感应强度为B的匀强磁场中,磁场方向与导轨所在平面垂直。导轨电阻可忽略,重力加速度为g。在t=0时刻将细线烧断,保持F不变,金属杆和导轨始终接触良好。求(1)细线少断后,任意时刻两杆运动的速度之比;(2)两杆分别达到的最大速度。XX解析:设某时刻MN和速度分别为v1、v2。(1)MN和动量守恒:mv1-2mv2=0 求出:(2)当MN和的加速度为零时,速度最大对受力平衡: 由得:、2、磁场2(2012
18、天津卷)如图所示,金属棒MN两端由等长的轻质细线水平悬挂,处于竖直向上的匀强磁场中,棒中通以由M向N的电流,平衡时两悬线与竖直方向夹角均为,如果仅改变下列某一个条件,角的相应变化情况是( )A棒中的电流变大,角变大B两悬线等长变短,角变小C金属棒质量变大,角变大D磁感应强度变大,角变小解析:水平的直线电流在竖直磁场中受到水平的安培力而偏转,与竖直方向形成夹角,此时它受拉力、重力和安培力而达到平衡,根据平衡条件有,所以棒子中的电流增大角度变大;两悬线变短,不影响平衡状态,角度不变;金属质量变大角度变小;磁感应强度变大角度变大。答案A。17(2012全国理综)质量分别为m1和m2、电荷量分别为q1
19、和q2的两粒子在同一匀强磁场中做匀速圆周运动,已知两粒子的动量大小相等。下列说法正确的是A.若q1=q2,则它们作圆周运动的半径一定相等B.若m1=m2,则它们作圆周运动的周期一定相等C. 若q1q2,则它们作圆周运动的半径一定不相等D. 若m1m2,则它们作圆周运动的周期一定不相等【解析】根据半径公式及周期公式知AC正确。【答案】AC18(2012全国理综).如图,两根互相平行的长直导线过纸面上的M、N两点,且与纸面垂直,导线中通有大小相等、方向相反的电流。a、o、b在M、N的连线上,o为MN的中点,c、d位于MN的中垂线上,且a、b、c、d到o点的距离均相等。关于以上几点处的磁场,下列说法
20、正确的是A.o点处的磁感应强度为零B.a、b两点处的磁感应强度大小相等,方向相反C.c、d两点处的磁感应强度大小相等,方向相同D.a、c两点处磁感应强度的方向不同【解析】A错误,两磁场方向都向下,不能 ;a、b两点处的磁感应强度大小相等,方向相同,B错误;c、d两点处的磁感应强度大小相等,方向相同,C正确;c、d两点处的磁感应强度方向相同,都向下,D错误。【答案】C10(2012海南卷).空间存在方向垂直于纸面向里的匀强磁场,图中的正方形为其边界。一细束由两种粒子组成的粒子流沿垂直于磁场的方向从O点入射。这两种粒子带同种电荷,它们的电荷量、质量均不同,但其比荷相同,且都包含不同速率的粒子。不计
21、重力。下列说法正确的是A.入射速度不同的粒子在磁场中的运动时间一定不同B. 入射速度相同的粒子在磁场中的运动轨迹一定相同C.在磁场中运动时间相同的粒子,其运动轨迹一定相同D.在磁场中运动时间越长的粒子,其轨迹所对的圆心角一定越大答案:BD解析:在磁场中半径 运动时间:(为转过圆心角),故BD正确,当粒子从O点所在的边上射出的粒子时:轨迹可以不同,但圆心角相同为1800,因而AC错15(2012广东卷).质量和电量都相等的带电粒子M和N,以不同的速度率经小孔S垂直进入匀强磁场,运行的半圆轨迹如图2种虚线所示,下列表述正确的是AM带负电,N带正电B.M的速度率小于N的速率C.洛伦磁力对M、N做正功
22、D.M的运行时间大于N的运行时间答案:A16(2012北京高考卷)处于匀强磁场中的一个带电粒子,仅在磁场力作用下做匀速圆周运动将该粒子的运动等效为环形电流,那么此电流值 A与粒子电荷量成正比 B与粒子速率成正比 C与粒子质量成正比 D与磁感应强度成正比答案:DABOC19(2012安徽卷). 如图所示,圆形区域内有垂直于纸面向里的匀强磁场,一个带电粒子以速度从点沿 直径方向射入磁场,经过时间从点射出磁场,与成60角。现将带电粒子的速度变为/3,仍从点沿原方向射入磁场,不计重力,则粒子在磁场中的运动时间变为 ( )A. B.2 C. D.3 ABOCOOD19B;解析:根据作图法找出速度为v时的
23、粒子轨迹圆圆心O,由几何关系可求出磁场中的轨迹弧所对圆心角A OC=60,轨迹圆半径,当粒子速度变为v/3时,其轨迹圆半径,磁场中的轨迹弧所对圆心角A OD=120,由知,故选B。23(2012山东卷).(18分)如图甲所示,相隔一定距离的竖直边界两侧为相同的匀 强磁场区,磁场方向垂直纸面向里,在边界上固定两长为L的平行金属极板MN和PQ,两极板中心各有一小孔、,两极板间电压的变化规律如图乙所示,正反向电压的大小均为,周期为。在时刻将一个质量为、电量为()的粒子由静止释放,粒子在电场力的作用下向右运动,在时刻通过垂直于边界进入右侧磁场区。(不计粒子重力,不考虑极板外的电场)(1)求粒子到达时德
24、 速度大小和极板距离。(2)为使粒子不与极板相撞,求磁感应强度的大小 应满足的条件。(3)若已保证了粒子未与极板相撞,为使粒子在时刻再次到达,且速度恰好为零,求该过程中粒子在磁场内运动的时间和磁感强度的大小23.(1)粒子由至的过程中,根据动能定理得 由式得 设粒子的加速度大小为,由牛顿第二定律得 由运动学公式得 联立式得 (2)设磁感应强度大小为B,粒子在磁场中做匀速圆周运动的半径为R,由牛顿第二定律得 要使粒子在磁场中运动时不与极板相撞,须满足 联立式得 (3)设粒子在两边界之间无场区向左匀速运动的过程用时为,有 联立式得 若粒子再次达到时速度恰好为零,粒子回到极板间应做匀减速运动,设匀减
25、速运动的时间为,根据运动学公式得 联立式得 设粒子在磁场中运动的时间为 联立式得 设粒子在匀强磁场中做匀速圆周运动的周期为T,由式结合运动学公式得 由题意得 联立式得 25(2012四川卷)(20分)如图所示,水平虚线X下方区域分布着方向水平、垂直纸面向里、磁感应强度为B的匀强磁场,整个空间存在匀强电场(图中未画出)。质量为m,电荷量为+q的小球P静止于虚线X上方A点,在某一瞬间受到方向竖直向下、大小为I的冲量作用而做匀速直线运动。在A点右下方的磁场中有定点O,长为l的绝缘轻绳一端固定于O点,另一端连接不带电的质量同为m的小球Q,自然下垂。保持轻绳伸直,向右拉起Q,直到绳与竖直方向有一小于50
26、的夹角,在P开始运动的同时自由释放Q,Q到达O点正下方W点时速率为v0。P、Q两小球在W点发生正碰,碰后电场、磁场消失,两小球粘在一起运动。P、Q两小球均视为质点,P小球的电荷量保持不变,绳不可伸长,不计空气阻力,重力加速度为g。 (1)求匀强电场场强E的大小和P进入磁场时的速率v; (2)若绳能承受的最大拉力为F,要使绳不断,F至少为多大? (3)求A点距虚线X的距离s。25解:(1)设小球P所受电场力为F1,则F1=qE在整个空间重力和电场力平衡,有Fl=mg联立相关方程得E=mg/q设小球P受到冲量后获得速度为v,由动量定理得I=mv得v=I/m说明:式各1分。(2)设P、Q同向相碰后在
27、W点的最大速度为vm,由动量守恒定律得mv+mv0=(m+m)vm此刻轻绳的张力也为最大,由牛顿运动定律得F-(m+m)g=vm2联立相关方程,得F=()2+2mg说明:式各2分,式1分。(3)设P在肖上方做匀速直线运动的时间为h,则tP1= 设P在X下方做匀速圆周运动的时间为tP2,则 tP2= 设小球Q从开始运动到与P球反向相碰的运动时间为tQ,由单摆周期性,有 11由题意,有 tQ=tP1+ tP2 12 联立相关方程,得 n为大于的整数13设小球Q从开始运动到与P球同向相碰的运动时间为tQ,由单摆周期性,有 14 同理可得 n为大于的整数15 说明:11 12 14式各1分,1315式
28、各2分。23(2012全国新课标).(10分)图中虚线框内存在一沿水平方向、且与纸面垂直的匀强磁场。现通过测量通电导线在磁场中所受的安培力,来测量磁场的磁感应强度大小、并判定其方向。所用部分器材已在图中给出,其中D为位于纸面内的U形金属框,其底边水平,两侧边竖直且等长;E为直流电源;R为电阻箱;为电流表;S为开关。此外还有细沙、天平、米尺和若干轻质导线。(1)在图中画线连接成实验电路图。(2)完成下列主要实验步骤中的填空按图接线。保持开关S断开,在托盘内加入适量细沙,使D处于平衡状态;然后用天平称出细沙质量m1。闭合开关S,调节R的值使电流大小适当,在托盘内重新加入适量细沙,使D_;然后读出_
29、,并用天平称出_。用米尺测量_。(3)用测量的物理量和重力加速度g表示磁感应强度的大小,可以得出B=_。(4)判定磁感应强度方向的方法是:若_,磁感应强度方向垂直纸面向外;反之,磁感应强度方向垂直纸面向里。答案重新处于平衡状态, 电流表的示数I, 此时细沙的质量m2D的底边长L(3) (4)25(2012全国新课标).(18分)如图,一半径为R的圆表示一柱形区域的横截面(纸面)。在柱形区域内加一方向垂直于纸面的匀强磁场,一质量为m、电荷量为q的粒子沿图中直线在圆上的a点射入柱形区域,在圆上的b点离开该区域,离开时速度方向与直线垂直。圆心O到直线的距离为。现将磁场换为平等于纸面且垂直于直线的匀强
30、电场,同一粒子以同样速度沿直线在a点射入柱形区域,也在b点离开该区域。若磁感应强度大小为B,不计重力,求电场强度的大小。答案解析粒子在磁场中做圆周运动,设圆周的半径为r,由牛顿第二定律和洛仑兹力公式得 式中v为粒子在a点的速度。过b点和O点作直线的垂线,分别与直线交于c和d点。由几何关系知,线段、和过a、b两点的轨迹圆弧的两条半径围成一正方形。因此,设=x,由几何关系得 联立式得再考虑粒子在电场中的运动。设电场强度的大小为E,粒子在电场中做类平抛运动。设其加速度大小为a,由牛顿第二定律和带电粒子在电场中受力公式得粒子在电场方向和直线方向所走的距离均为r,由运动学公式得 vt式中t是粒子在电场中
31、运动的时间,联立式得 12(2012天津卷).对铀235的进一步研究在核能的开发和利用中具有重要意义,如图所示,质量为m、电荷量为q的铀235离子,从容器A下方的小孔S1不断飘入加速电场,其初速度可视为零,然后经过小孔S2垂直于磁场方向进入磁感应强度为B的匀强磁场中,做半径为R的匀速圆周运动,离子行进半个圆周后离开磁场并被收集,离开磁场时离子束的等效电流为I,不考虑离子重力及离子间的相互作用。(1)求加速电场的电压U(2)求出在离子被收集的过程中任意时间t内收集到离子的质量M(3)实际上加速电压的大小会在UU范围内微小变化,若容器A中有电荷量相同的铀235和铀238两种离子,如前述情况它们经电
32、场加速后进入磁场中会发生分离,为使这两种离子在磁场中运动的轨迹不发生交叠,应小于多少?(结果用百分数表示,保留两位有效数字)12.(20分)解析:(1)铀粒子在电场中加速到速度v,根据动能定理有 进入磁场后在洛伦兹力作用下做圆周运动,根据牛顿第二定律有 由以上两式化简得 (2)在时间t内收集到的粒子个数为N,粒子总电荷量为Q,则 由式解得 (3)两种粒子在磁场中运动的轨迹不发生交叠,即不要重合,由可得半径为 由此可知质量小的铀235在电压最大时的半径存在最大值 质量大的铀238质量在电压最小时的半径存在最小值所以两种粒子在磁场中运动的轨迹不发生交叠的条件为 化简得 32(2012上海卷)(13
33、分)载流长直导线周围磁场的磁感应强度大小为BkI/r, 式中常量k0,I为电流强度,r为距导线的距离。在水平长直导线MN正下方,矩形线圈abcd通以逆时针方向的恒定电流,被两根轻质绝缘细线静止地悬挂,如图所示。开始时MN内不通电流,此时两细线内的张力均为T0。当MN通以强度为I1的电流时,两细线内的张力均减小为T1,当MN内电流强度变为I2时,两细线内的张力均大于T0。(1)分别指出强度为I1、I2的电流的方向;(2)求MN分别通以强度为I1、I2的电流时,线框受到的安培力F1与F2大小之比;(3)当MN内的电流强度为I3时两细线恰好断裂,在此瞬间线圈的加速度大小为a,求I3。 答案:(1)I
34、1方向向左,I2方向向右,(2)当MN中通以电流I时,线圈所受安培力大小为FkIiL(),F1:F2I1:I2,(3)2T0G,2T1F1G,F3GG/ga,I1:I3F1:F3(T0T1)g /(ag)T0,I3(ag)T0I1/(T0T1)g,9(2012江苏卷)如图所示,MN是磁感应强度B匀强磁场的边界,一质量为m、电荷量为q粒子在纸面内从O点射入磁场,若粒子速度为v0,最远可落在边界上的A点,下列说法正确的有A若粒子落在A点的左侧,其速度一定小于v0B若粒子落在A点的右侧,其速度一定大于v0C若粒子落在A点左右两侧d的范围内,其速度不可能小于D若粒子落在A点左右两侧d的范围内,其速度不
35、可能大于【解析】当粒子以速度垂直于MN进入磁场时,最远,落在A点,若粒子落在A点的左侧,速度不一定小于,可能方向不垂直,落在A点的右侧,速度一定大于,所以A错误,B正确;若粒子落在A点的右侧处,则垂直MN进入时,轨迹直径为,即,已知,解得,不垂直MN进时,所以C正确,D错误。【答案】BCylll-U1U2m +qU0U0o0+0-0oxz待测区域A15(2012江苏卷)(16分)如图所示,待测区域中存在匀强电场与匀强磁场,根据带电粒子射入时的受力情况可推测其电场和磁场,图中装置由加速器和平移器组成,平移器由两对水平放置、相距为l的相同平行金属板构成,极板长度为l,问距为d,两极板间偏转电压大小
36、相等,电场方向相反,质量为m、电荷量为+q的粒子经加速电压U0加速后,水平射入偏转电压为U1的平移器,最终从A点水平射入待测区域,不考虑粒子受到的重力。(1)求粒子射出平移器时的速度大小v1;(2)当加速电压变为4U0时,欲使粒子仍从A点射入待测区域,求此时的偏转电压U;(3)已知粒子以不同速度水平向右射入待测区域,刚进入时的受力大小均为F,现取水平向右为x轴正方向,建立如图所示的直角坐标系oxyz,保持加速电压U0不变,移动装置使粒子沿不同的坐标轴方向射入待测区域,粒子刚射入时的受力大小如下表所示,请推测该区域中电场强度与磁感应强度的大小及可能的方向射入方向y-yz-z受力大小【答案】(1)
37、设粒子射出加速器的速度为, 动能定理 由题意得,即(2)在第一个偏转电场中,设粒子的运动时间为:加速度的大小 ,在离开时,竖直分速度 竖直位移 水平位移 粒子在两偏转电场间做匀速直线运动,经历时间也为竖直位移由题意知,粒子竖直总位移,解得 则当加速电压为时,(3)由沿轴方向射入时的受力情况可知:B平行于轴,且 由沿轴方向射入时的受力情况可知:与平面平行。,则 且解得 设电场方向与轴方向夹角为,若B沿轴方向,由沿轴方向射入时的受力情况得解得,或即E与平面平行且与轴方向的夹角为300或1500,同理若B沿轴方向,E与平面平行且与轴方向的夹角为-300或-1500。24(2012重庆卷)(18分)有
38、人设计了一种带电颗粒的速率分选装置,其原理如题24图所示。两带电金属板间有匀强电场,方向竖直向上,其中PQNM矩形区域内还有方向垂直纸面向外的匀强磁场。一束比荷(电荷量与质量之比)均为1/k的带正电颗粒,以不同的速率沿着磁场区域的中心线O进入两金属板之间,其中速率为v0的颗粒刚好从Q点处离开磁场,然后做匀速直线运动到达收集板。重力加速度为g,PQ=3d,NQ=2d,收集板与NQ的距离为,不计颗粒间相互作用,求电场强度E的大小磁感应强度B的大小速率为v0(1)的颗粒打在收集板上的位置到O点的距离。24(18分)设带电颗粒的电量为q,质量为m 有将q/m=1/k代入得如答24图1,有得 如答24图
39、2有 得24(2012浙江卷)(20分)如图所示,两块水平放置、相距为d的长金属板接在电压可调的电源上。两板之间的右侧区域存在方向垂直纸面向里的匀强磁场。将喷墨打印机的喷口靠近上板下表面,从喷口连续不断喷出质量均为m、水平速度均为v带相等电荷量的墨滴。调节电源电压至U,墨滴在电场区域恰能沿水平向右做匀速直线运动;进入电场、磁场共存区域后,最终垂直打在下板的M点。 (1)判断墨滴所带电荷的种类,并求其电荷量; (2)求磁感应强度B的值; (3)现保持喷口方向不变,使其竖直下移到两板中间的位置。为了使墨滴仍能到达下板M点,应将磁感应强度调至B,则B的大小为多少?24题答案:3、力学实验23(201
40、2全国理综).(11分)图1为验证牛顿第二定律的实验装置示意图。图中打点计时器的电源为50Hz的交流电源,打点的时间间隔用t表示。在小车质量未知的情况下,某同学设计了一种方法用来研究“在外力一定的条件下,物体的加速度与其质量间的关系”。(1)完成下列实验步骤中的填空:平衡小车所受的阻力:小吊盘中不放物块,调整木板右端的高度,用手轻拨小车,直到打点计时器打出一系列_的点。按住小车,在小吊盘中放入适当质量的物块,在小车中放入砝码。打开打点计时器电源,释放小车,获得带有点列的纸袋,在纸袋上标出小车中砝码的质量m。按住小车,改变小车中砝码的质量,重复步骤。在每条纸带上清晰的部分,没5个间隔标注一个计数点。测量相邻计数点的间距s1,s2,。求出与不同m相对应的加速度a。以砝码的质量m为横坐标为纵坐标,在坐标纸上做出关系图线。若加速度与小车和