《高中数学立体几何方法题型总结.doc》由会员分享,可在线阅读,更多相关《高中数学立体几何方法题型总结.doc(5页珍藏版)》请在三一办公上搜索。
1、 立体几何重要定理:1)直线与平面垂直的判定定理:如果一条直线和一个平面内的两条相交直线都垂直,那么这两条直线垂直于这个平面.2)直线和平面平行性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行.3)平面平行判定定理:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行.4)两个平面垂直性质判定:如果一个平面与一条直线垂直,那么经过这条直线的平面垂直于这个平面. 两个平面垂直性质定理:如果两个平面垂直,那么在一个平面内垂直于它们交线的直线也垂直于另一个平面.5)推论:如果两个相交平面都垂直于第三平面,则它们交线垂直于第三平面.证明:如图
2、,找O作OA、OB分别垂直于,因为则.一:夹角问题 异面直线所成的角、直线与平面所成的角、二面角的取值范围依次. 直线的倾斜角、到的角、与的夹角的取值范围依次是异面直线所成角:范围:(1)平移法:在异面直线中的一条直线中选择一特殊点,作另一条的平行线构成三角形;解三角形求出角。(常用到余弦定理)(2)补形法:把空间图形补成熟悉的或完整的几何体,如正方体、平行六面体、长方体等,其目的在于容易发现两条异面直线间的关系; (3)向量法。转化为向量的夹角 (计算结果可能是其补角)直线与平面所成的角 斜线和平面所成的是一个直角三角形的锐角,它的三条边分别是平面的垂线段、斜线段及斜线段在平面上的射影。通常
3、通过斜线上某个特殊点作出平面的垂线段,垂足和斜足的连线,是产生线面角的关键;向量法:设直线的方向向量为,平面的法向量为,与所成的角为,与的夹角为,则有的求法二面角的平面角,(1)定义法:在棱l上取一点P,两个半平面内分别作l的垂线(射线)m、n,则射线m和n的夹角为二面角l的平面角。(2)三垂线法:(三垂线定理法:A作或证AB于B,作BO棱于O,连AO,则AO棱l,AOB为所求。)向量法:设,是二面角的两个面,的法向量,则向量,的夹角(或其补角)就是二面角的平面角的大小若二面角的平面角为,则二、空间距离问题两异面直线间的距离方法一:转化为线面距离。如图,m和n为两条异面直线,且,则异面直m和n
4、之间的距离可转化为直线m与平面之间的距离。方法二:高考要求是给出公垂线,所以一般先利用垂直作出公垂线,然后再进行计算,直接计算公垂线段的长度。点到直线的距离:一般用三垂线定理作出垂线再求解;向量法:点到直线距离:在直线上找一点,过定点且垂直于直线的向量为,则定点到直线的距离为点到平面的距离方法一:几何法。步骤1:过点P作PO于O,线段PO即为所求。步骤2:计算线段PO的长度。(直接解三角形;等体积法和等面积法;换点法)等体积法步骤:在平面内选取适当三点,和已知点构成三棱锥;求出此三棱锥的体积V和所取三点构成三角形的面积S;由V=Sh,求出h即为所求.这种方法的优点是不必作出垂线即可求点面距离.
5、方法二:坐标法。线面距、面面距均可转化为点面距三、平行与垂直问题证明直线与平面的平行:(1)转化为线线平行;(2)转化为面面平行.证明平面与平面平行:(1)转化为线面平行;(2)转化为线面垂直.证明线线垂直:(1)转化为相交垂直;(2)转化为线面垂直;(3)转化为线与另一线的射影垂直;方法(2):用线面垂直实现。 方法(3):三垂线定理及其逆定理。证明线面垂直:(1)转化为该直线与平面内相交二直线垂直;(2)转化为该直线与平面的一条垂线平行;(3)转化为该直线垂直于另一个平行平面;(4)转化为该直线与两个垂直平面的交线垂直.方法(1):用线线垂直实现。 方法二:用面面垂直实现。 面面垂直: 方
6、法一:用线面垂直实现。方法二:计算所成二面角为直角。立体讲解:1、已知正四棱柱中,E为中点,则异面直线BE与 所成角的余弦值为2、如图,已知六棱锥P-ABCDEF的底面是正六边形,PA平面ABC,PA=2AB,则下列结论正确的是(A)PBAD (B)平面PAB平面PBC(C)直线BC平面PAE(D)直线PD与平面ABC所成角为4503、已知正三棱柱的各条棱长都相等,M是侧棱的中点,侧异面直线所成的角的大小是 .4)三棱锥的高为,若三个侧面两两垂直,则为的A 内心 B 外心 C 垂心 D 重心)已知直二面角l,若AB,ACBD,则D到平面ABC的距离的等于()ABCD)如图,正三棱柱的所有棱长都
7、为,为中点()求证:平面;()求二面角的大小;()求点到平面的距离)在三棱锥中,是边长为的正三角形,平面平面,、分别为的中点 ()证明:;()求二面角-的大小;()求点到平面的距离 A1ED1C1B1DCBA3、如图,在正方体中,是的中点,在DE上取一点G,平面AGC与平面交与直线GH,求证AC与GH平行)解答过程:()取中点,连结ABCDOF为正三角形,正三棱柱中,平面平面,平面连结,在正方形中,分别为的中点, , 在正方形中, 平面()设与交于点,在平面中,作于,连结,由()得平面, 为二面角的平面角在中,由等面积法可求得,又, 所以二面角的大小为()中,在正三棱柱中,到平面的距离为设点到平面的距离为由,得,点到平面的距离为