《函数及其表示知识点+练习题+答案.doc》由会员分享,可在线阅读,更多相关《函数及其表示知识点+练习题+答案.doc(8页珍藏版)》请在三一办公上搜索。
1、函数及其表示考纲知识梳理一、函数与映射的概念函数映射两集合设是两个非空数集设是两个非空集合对应关系如果按照某种确定的对应关系,使对于集合中的任意一个数,在集合中都有唯一确定的数和它对应。如果按某一个确定的对应关系,使对于集合中的任意一个元素,在集合中都有唯一确定的元素与之对应。名称称为从集合到集合的一个函数称为从集合到集合的一个映射记法,对应是一个映射 注:函数与映射的区别:函数是特殊的映射,二者区别在于映射定义中的两个集合是非空集合,可以不是数集,而函数中的两个集合必须是非空数集。二、函数的其他有关概念(1)函数的定义域、值域在函数,中,叫做自变量,的取值围叫做函数的定义域;与的值相对应的值
2、叫做函数值,函数值的集合叫做函数的值域(2)一个函数的构成要素定义域、值域和对应法则(3)相等函数如果两个函数的定义域相同,并且对应关系完全一致,则这两个函数为相等函数。注:若两个函数的定义域与值域相同,是否为相等函数?(不一定。如果函数y=x和y=x+1,其定义域与值域完全相同,但不是相等函数;再如y=sinx与y=cosx,其定义域为R,值域都为-1,1,显然不是相等函数。因此凑数两个函数是否相等,关键是看定义域和对应关系)(4)函数的表示方法表示函数的常用方法有:解析法、图象法和列表法。(5)分段函数若函数在其定义域的不同子集上,因对应法则不同而分别用几个不同的式子来表示,这种函数称为分
3、段函数。分段函数的定义域等于各段函数的定义域的并集,其值域等于各段函数的值域的并集,分段函数虽由几个部分组成,但它表示的是个函数。函数及其表示测试题1、设函数则不等式的解集是( A )A. B. C. D.解析 由已知,函数先增后减再增当,令解得。当,故 ,解得2、试判断以下各组函数是否表示同一函数?(1)f(x)=,g(x)=;(2)f(x)=,g(x)=(3)f(x)=,g(x)=()2n1(nN*);(4)f(x)=,g(x)=;(5)f(x)=x22x1,g(t)=t22t1。解:(1)由于f(x)=|x|,g(x)=x,故它们的值域及对应法则都不相同,所以它们不是同一函数;(2)由于
4、函数f(x)=的定义域为(,0)(0,+),而g(x)=的定义域为R,所以它们不是同一函数;(3)由于当nN*时,2n1为奇数,f(x)=x,g(x)=()2n1=x,它们的定义域、值域及对应法则都相同,所以它们是同一函数;(4)由于函数f(x)=的定义域为x|x0,而g(x)=的定义域为x|x1或x0,它们的定义域不同,所以它们不是同一函数;(5)函数的定义域、值域和对应法则都相同,所以它们是同一函数注:对于两个函数y=f(x)和y=g(x),当且仅当它们的定义域、值域、对应法则都相同时,y=f(x)和y=g(x)才表示同一函数若两个函数表示同一函数,则它们的图象完全相同,反之亦然。3、 求
5、下列函数的值域:(1);(2);(3);(4);(5);(6);(7);(8);解:(1)(配方法),的值域为(2)求复合函数的值域:设(),则原函数可化为又,故,的值域为(3)(法一)反函数法:的反函数为,其定义域为,原函数的值域为(法二)分离变量法:,函数的值域为(4)换元法(代数换元法):设,则,原函数可化为,原函数值域为注:总结型值域,变形:或(5)三角换元法:,设,则,原函数的值域为(6)数形结合法:,函数值域为(7)判别式法:恒成立,函数的定义域为由得: 当即时,即,当即时,时方程恒有实根,且,原函数的值域为(8),当且仅当时,即时等号成立,原函数的值域为4、求函数的解析式(1)已
6、知,求;(2)已知,求;(3)已知是一次函数,且满足,求;(4)已知满足,求;解:(1)配凑法:,(或);(2)换元法:令(),则,;(3)待定系数法:设,则,;(4)方程组法: 把中的换成,得 ,得。5.设a是正数,ax+y=2(x0,y0),记y+3xx2的最大值是M(a),试求:M(a)的表达式;解 将代数式y+3xx2表示为一个字母,由ax+y=2解出y后代入消元,建立关于x的二次函数,逐步进行分类求M(a)。设S(x)=y+3xx2,将y=2ax代入消去y,得:S(x)=2ax+3xx2 =x2+(3a)x+2 =x(3a)2+(3a)2+2(x0)y0 2ax0而a0 0x下面分三种情况求M(a)(i)当03a0),即时解得 0a1或2a0)即时,解得:1a2,这时M(a)=S()=2a+3 =+(iii)当3a0;即a3时M(a)=S(0)=2综上所述得:M(a)=