底板抽放巷在瓦斯治理中的应用及问题研究设计专题报告.doc

上传人:牧羊曲112 文档编号:4263465 上传时间:2023-04-12 格式:DOC 页数:19 大小:950KB
返回 下载 相关 举报
底板抽放巷在瓦斯治理中的应用及问题研究设计专题报告.doc_第1页
第1页 / 共19页
底板抽放巷在瓦斯治理中的应用及问题研究设计专题报告.doc_第2页
第2页 / 共19页
底板抽放巷在瓦斯治理中的应用及问题研究设计专题报告.doc_第3页
第3页 / 共19页
底板抽放巷在瓦斯治理中的应用及问题研究设计专题报告.doc_第4页
第4页 / 共19页
底板抽放巷在瓦斯治理中的应用及问题研究设计专题报告.doc_第5页
第5页 / 共19页
点击查看更多>>
资源描述

《底板抽放巷在瓦斯治理中的应用及问题研究设计专题报告.doc》由会员分享,可在线阅读,更多相关《底板抽放巷在瓦斯治理中的应用及问题研究设计专题报告.doc(19页珍藏版)》请在三一办公上搜索。

1、底板抽放巷在瓦斯治理中的应用及问题研究摘要:为了降低单一突出煤层煤巷掘进突出危险性,研究了运用煤层底板抽放巷穿层钻孔预抽煤层瓦斯为主的区域消突措施,通过增加煤层透气性和合理布置钻孔位置,使煤层卸压,瓦斯含量与压力降低,改变煤体应力分布,消除突出危险性。在穿层预抽钻孔的工过程中, 进行了预裂爆破、高压冲孔等增透技术的研究, 提高了煤层的透气性, 增加了瓦斯抽采量, 区域瓦斯治理效果明显。关键词:底抽巷 穿层预抽 增透 钻孔 一巷两用0概况瓦斯抽采是区域瓦斯治理技术的关键,有效地抽出开采区域内的瓦斯,对于降低瓦斯压力、消除煤与瓦斯突出有着重要的作用。在防治煤与瓦斯突出规定颁布实施以后,明确要求突出

2、煤层必须按照一定的顺序选取区域瓦斯治理措施。其中,顶底板岩巷穿层抽采技术是其中一项重要的内容,顶底板岩巷穿层预抽技术是通过在施工的顶底板岩巷内向采掘作业范围内的煤体中施工预抽钻孔,在不扰动突出煤层的情况下,通过预抽提前消除煤与瓦斯突出危险。因此,钻孔的预抽效果直接决定了区域瓦斯治理的成败。在煤矿开采过程中,随着开采深度增加和开采强度增大,煤层瓦斯含量和地应力增大,突出危险程度更为严重;伴随有灾害强度大,防治困难和灾害损失严重等特点。原有的排放钻孔、卸压钻孔、浅孔松动爆破、边掘边抽等接触式局部瓦斯治理措施,已不能有效地解决措施施工和掘进相集中的问题,致使采掘失调。根据多年的实践和现场应用证明,区

3、域瓦斯治理能够更有效地进行消突和防突,由区域治理代替局部瓦斯治理,由接触式向非接触式、由局部预测预报向区域性安全评价转换,是解决一切问题的关键。瓦斯突出多数发生在煤巷掘进头,统计数据显示占所有突出次数的 70.2%,煤巷掘进过程中频繁的突出成为制约矿井安全的主要因素。通过底抽巷向采掘区域施工抽采钻孔,预抽采掘进迎头瓦斯,降低掘进范围内的煤与瓦斯突出危险,对于煤巷的安全快速掘进具有重要作用。底抽巷为上、下两个工作面回采巷道掘进服务,经受多次采动影响,围岩变形比较严重,维护比较困难,通过改变底抽巷炮掘施工工艺方式、提高支护强度和加强顶板管理等在底抽巷围岩控制中取得了良好的效果。瓦斯抽采是防治瓦斯灾

4、害的主要措施先抽后采、监测监控、以风定产”的瓦斯防治十二字方针和“通风可靠、抽采达标、监控有效、管理到位”的瓦斯综合治理“十六字”工作体系明确了瓦斯抽采在瓦斯治理中的基础地位目前,我国绝大部分突出矿井和高瓦斯矿井都建立了地面瓦斯抽采系统或井下移动瓦斯抽采系统,由于在抽采成本控制、抽采工期以及抽采效果等方面存在的一些问题,导致一些煤矿抽采系统建设不合理,抽采效果不明显,有些甚至成为了摆设如何通过提高抽采巷道的利用效率来降低瓦斯抽采成本 、提高瓦斯抽采效果是值得探讨的问题。本文在对底抽巷 和“一进双回”工作面外侧回风巷3种典型巷道抽采方法进行分析的基础上,提出了相应的“一巷两用”瓦斯抽采技术,即在

5、实现巷道原有瓦斯抽采功能的基础上实现另一种瓦斯抽采功能,以提高瓦斯抽采巷道 的利用率。1条带区域防突机理目前区域防突技术只有开采保护层和预抽煤层瓦斯两大类。开采保护层是最有效的防突措施,但对于单一厚煤层来说,缺乏开采保护层的条件,所以只能采用预抽煤层瓦斯措施。底板抽放巷穿层钻孔条带区域预抽是通过向突出煤层巷道及其两侧一定范围内打大量的密集钻孔使煤体区域卸压,同时抽放瓦斯释放其潜能,然后再经过较长时间的预抽煤层瓦斯使瓦斯压力与瓦斯含量进一步降低,并由此引起煤层的收缩变形、地应力下降、透气系数增高、地应力与瓦斯压力梯度减小和煤的普氏系数增加等变化,从而达到消除在煤巷掘进过程中突出危险性目的。提高瓦

6、斯抽放率是制约瓦斯抽放的关键技术环节,煤层瓦斯抽放效果的主要因素除了煤层本身含瓦斯条件外,还取决于煤层透气性及钻孔工艺参数、钻孔孔底间距。钻孔孔径根据技术水平、煤体硬度及抽放半径确定,选择 75 110 mm 为宜; 抽放时间和有效抽放半径成正相关关系。钻孔经过有效抽放周期 3 6 月后,瓦斯抽放效率逐渐降低,可采取深孔预裂爆破、水力冲孔、煤层注水等增透技术提高煤层透气性系数和瓦斯抽放率。选择最佳的抽放钻孔参数对提高煤层瓦斯抽放率具有重要的意义。2 穿层预抽钻孔增透措施 目前大多数高瓦斯矿井的煤层透气性差, 为提高瓦斯抽采效果, 必须采取针对性的增透技术措施。国内在增加煤层透气性方面试验了水力

7、压裂法、水力割缝法、水力空穴法、深孔预裂爆破法、静电法等, 虽有一定效果, 但因机具等方面的原因存在一定的不足; 现在主要采取增加钻孔在煤层内的暴露面积、布孔密度和立交钻孔等措施。与国内外相关技术研究比较, 焦作矿区煤层无法实现层外抽放技术措施, 结合焦作矿区的煤层赋存特点, 在提高煤层透气性方面进行的研究, 包括提高钻孔有效影响半径和改变煤体裂隙发育状态等方面。大直径钻孔试验、变径扩孔试验等属于提高钻孔有效影响半径的方式, 深孔预裂爆破则属于提高煤体裂隙发育程度的方式。在岩巷施工预抽钻孔期间, 选择钻孔分别采取预裂爆破、高压水冲孔等不同技术进行煤层增透试验。3预裂爆破增透技术预裂爆破增透技术

8、是通过在穿层钻孔内放入药卷,有控制地进行深孔内爆破, 之后对爆破范围内的穿层钻孔进行强化抽采。综合爆破作用的各学派观点认为,在低透气性煤层中的爆破作用表现在以下几个方面:爆破冲击波(应力波)的作用,在于使煤岩体中产生裂纹,将原始损伤裂纹进一步扩展;爆生气体的作用,楔入煤岩体,使节理、裂隙、孔隙贯通,降低瓦斯压力;爆炸能量和爆炸热对煤体加热,促进吸附瓦斯转化为游离瓦斯。炮孔装药结构是预裂爆破法致裂过程中的关键一环,它直接关系到爆破致裂的效果。为提高爆破效果,研究了优化的装药工艺和爆破方式。装药时用竹板上、下错步扣住药卷, 炸药卷与炸药卷之间必须彼此接触,从预裂管和炸药顶端开始敷设导爆索, 导爆索

9、和炸药要紧密接触。封孔段用黄沙和黄泥进行充填。3.1深孔控制爆破的实施3.1.1孔径的选择孔径的大小直接影响钻眼效率、钻孔数目、炸药单耗和裂纹扩展数目。根据煤层和围岩的岩性、尽可能形成更大的范围的贯通裂隙的要求以及打钻设备的能力、炸药性能等加以综合分析和选择。根据平煤股份公司各矿经验、钻具和八矿几十年的爆破经验,爆破孔孔径为75 mm。控制孔直径对提高煤层透气性的作用在一定范围内是有限的。受现场打钻设备和工艺安全( 孔径过大容易引起塌孔、卡钻等事故) 以及地质因素的限制,一般在 70 150 mm 之间可达到导向和补偿作用。根据类似矿井条件经验和八矿的实际情况,试验孔径取 75 mm。3.1.

10、2钻孔深度井下在防治瓦斯突出中应用的顺层布置钻孔,深度可以达到 50 160 m。根据试验区工作面的具体情况,主要为解决风巷掘进期间煤与瓦斯,在高位巷布置穿层钻孔,孔深 15 30 m,控制风巷上帮 20m、下帮 10 m 的条带区域。3.1.3爆破孔与控制孔间距当煤层条件一定时,孔间距的大小应与爆破孔和控制孔的直径相匹配,在一个较合理的范围内,才有利于裂隙的形成和发展,有利于提高煤层的透气性。合适的间距应使爆破孔和控制孔间形成贯穿裂缝。深孔控制预裂爆破引起煤产生裂隙,形成裂隙圈,提高了煤层透气性。但由于煤层瓦斯的压差和其流动性,使预裂爆破的抽放半径( 影响半径)大于裂隙圈的半径。根据现场实际

11、爆破经验爆破孔和控制孔间距为4 8 m。3.1.4爆破 装药参数确定在现场试验中,根据实际情况,选用了三级煤矿许用水胶炸药 30 mm 330 mm,净重330 g。采用穿层钻孔,孔口为岩石段,孔底及中部为煤层,封孔较容易,为更好的对煤体进行松动,选用正向起爆。炸药单耗量 0 95 kg/m; 爆破孔装药段要求进入煤层顶板岩石1 m,单孔装药长度一般为6 8 m,单孔装药量在 5 7 7 6 kg; 人工黄泥封孔,封孔长度 8m。3.2深孔预裂爆破技术的工艺流程3.2.1布孔方式掘进工作面布置3个钻孔,如图l所示。其中爆破孔2个,控制孔1个,爆破孔与控制孔布置在同一水平,其布孔参数见表1。3.

12、2.2爆破工艺1)打钻:根据现场条件,技术人员应准确确定钻机的位置和角度后打钻,记录钻孔长度,同时确定装药的长度。钻孔打好后,尽量使钻孔煤渣排出,当钻杆拔出后,立即探孔验证孔深,为防止垮孔,验孔完毕即装药,其装药参数见表1。2)装药方式:每个爆破孔使用特制专用药管进行装药 (控制孔不装药),采用正 向装药方式,其专用炸药管技术性能参数如下:3)封孔方式:装药完毕,随即采用专用封孔器用略潮的黄土进行封孔,压风风压为0.4一0.6MaP。封孔时应注意用麻袋片护住孔 口,以免煤泥砂冲出伤人。4)放炮前关闭进人 该掘进工 作面巷旁抽放系统总阀,防止爆破孔与抽放孔沟通破坏抽放系统。放炮后立即打开抽放系统

13、总阀进行抽放。3.3预裂爆破增透效果3.3.1抽采瓦斯量进风巷8寸瓦斯抽采孔板瓦斯抽出量比预裂爆破前平均增加1019% ,最大增加 2115% ,见图3.2。 图3.2 抽出量曲线图3.3.2 预裂爆破孔影响的范围预裂爆破后, 爆破孔以里916m、1116m处和以外4 m、8m处的瓦斯抽采孔抽采量减少, 其他钻孔的抽采量都是增加的;70d后所有钻孔的抽采量都比预裂爆破前增加, 百米钻孔瓦斯流量比预裂爆破前增大。钻孔瓦斯抽采量变化见图3.3。图3.3 钻孔瓦斯抽采量变化3.3.3 增透性效果爆破后,钻孔瓦斯抽采量提高,衰减系数成倍降低,表现出了明显的增透效果。试验期间的考察曲线,如图3.4所示。

14、由图3.4可以看出, 爆破后较短的时间内瓦斯抽采量增加幅度较大, 虽然很快有所衰减,但衰减系数由 0 0260 0301d-1降至 0 0039 0 0054d-1,可见煤层透性系数得到了明显增加。图3.4 爆破后的瓦斯含量4水力冲孔增透技术4.1水力冲孔工作原理水力冲孔防突措施是指在底板岩巷施工穿层钻孔,在岩柱掩护下,使用高压水射流冲击钻孔周围的煤体,造成煤体破碎使之部分排出,煤体内部原有的应力和瓦斯的稳定平衡状态被打破,冲出大量的煤体和瓦斯,形成孔洞。在地应力作用下,孔洞周围煤体向钻孔方向移动,使孔洞附近煤体卸压,同时释放大量瓦斯,大幅度增加孔洞周围煤体的透气性,有效地提高了抽放效果,起到

15、综合防突的作用。4.2水力冲孔工艺设备及流程水力冲孔系统由乳化液泵、水箱、压力表、防喷装置和喷头等组成。选用额定压力为 30 MPa、额定流量为 200 L/min 乳化液泵,为便于操作和控制,乳化液泵安装有压力表和卸压阀门等附件,水箱容积1 000 L,高压管路选用内径 25 mm 高压胶管。水力冲孔是利用冲孔钻具在全液压钻机的作用下,冲孔割刀在钻孔内来回运动,在高压水射流作用下,对煤体进行冲刷,剥落和冲出的水煤被排出。接头密封的钻杆当作导流杆,利用高压水表和压力表测定冲孔水量并保持冲孔水压。 图4.1 自动变径扩孔增透切割钻具示意图4.3水力冲孔试验4.3.1钻孔布置选定 3号、 6号、

16、7号钻孔进行水力冲孔, 其余孔作为考察孔。钻孔布置如图4.2所示, 每组钻孔共设计 9个钻孔, 各钻孔采取间隔 4-5m的布置方式。每组钻孔直径均为113mm。钻孔采用108mm以上的钻头开孔,确保排渣顺利。要求钻孔必须穿透煤层的顶(底)板0.5m, 施工结束后退出钻杆。同时要安装防喷装置,并用锚杆固定结实。图4.2 钻孔布置图钻孔施工使用 SGZ - 300型钻机,采用113mm复合片钻头、50mm平光钻杆压力水排渣法钻进。孔深超过50m的穿层孔使用导向装置,见13- 1煤时及时撤出导向装置(以防埋钻)改用水力冲孔排渣法钻进。4.3.2水力冲孔设备在高压水射流钻孔试验中,主要设备包括:高压水

17、射流供水设备、高压水射流发生设备、钻机。高压水射流供水设备主要包括: 水箱、高压水泵、高压胶管、高压水尾及钻杆。高压水射流发生设备主要包括:旋转水射流钻头、偏置式水射流钻头及液压马达钻具。试验中, 高压水泵的选型比较关键,根据钻孔和排渣要求,采用RB80乳化液泵,水力冲孔时将水泵的出水压力调节为20MPa,流量约200L/min。为保证试验过程中及时供水,水箱设计体积为3m。试验高压胶管的抗压强度为32MPa。水力冲孔钻头采用硬质合金片钻头,径向喷嘴直径为20mm,轴向喷嘴直径为18mm。 图4.3 水力冲孔系统布置示意图4.3.3水力冲孔过程本次试验选取第 47组的 7号、6号、3号钻孔进行

18、水力冲孔试验, 相关参数见表4.1。表4.1 水利冲孔试验孔参数冲孔前要先按设计的孔径和角度施工钻孔。钻孔完成后, 冲孔可先从外向里逐渐冲孔, 然后再从里向外冲孔, 采用边进边退的方法。按单孔冲出煤量不小于单孔平均控制煤量的 1% 计算, 单孔每米冲出煤量需达到 2 0 3 0 t煤, 相当于水力冲孔将113 mm 的钻孔扩为 670 820 mm 的孔洞。为防止水力冲孔过程中瓦斯浓度严重超限, 可采用间歇式冲孔。当瓦斯体积分数达到 0 8% 时即停止冲孔, 当瓦斯体积分数降低为 0 8% 以下后再开泵继续冲孔。冲孔前应保持巷道排水的畅通, 以保证现场有较好的工作环境。4.5水利冲孔效果分析4

19、.5.1水力冲孔冲出煤量分析采取水力冲孔措施后,煤体被高压水破碎并冲出煤层,钻孔周围的煤体向孔道方向产生较大幅度的位移,煤体产生膨胀变形和顶底板间的相向位移。在孔道影响范围内地应力降低, 煤层得到充分卸压,裂隙发育,煤层透气性大幅度增加,瓦斯流动场扩大。不但使煤层中瓦斯抽放总量增加,而且衰减也会降低。因此,水力冲孔的冲出煤量越大,水力冲孔在煤体中的扩孔半径也越大,卸压增透的效果也就越明显。对7号、6号和3号钻孔进行水力冲孔试验时现场测得的冲出煤量和计算的扩孔半径见表4.2。表4.2 水力冲孔冲出煤量及扩孔半径4.4.2风流中瓦斯浓度变化2010年 7月 12日在对第47组3号钻孔进行水力冲孔试

20、验时,在距推进工作面 6 m处和回风巷中安装智能低浓度甲烷传感器T1和T2作为探头, 用来监控瓦斯浓度的变化。 T1探头瓦斯体积分数的变化如图4.4所示,T2探头瓦斯体积分数的变化如图4.5所示(每隔 5min监测瓦斯体积分数平均值变化曲线 )。冲孔前T1探头瓦斯体积分数基本稳定在 0 14% 左右, 冲孔期间瓦斯体积分数多数在0 22% 左右。另外, 孔口巷道侧附近瓦斯体积分数一般在0.7%左右, 孔口钻场侧瓦斯体积分数超过4%,主要受风量分布不均影响。图4.4 T1探头监测到的瓦斯体积分数变化曲线图4.5 T2探头监测到的瓦斯体积分数变化曲线4.4.3考察孔瓦斯流量变化2010年7月12日

21、在对3号钻孔冲孔过程中,以4号钻孔作为察孔,考察水力冲孔过程中瓦斯流量的变化情况,考察孔在冲孔前瓦斯流量为0.15L/min,水力冲孔期间瓦斯流量的变化如图4.6所示。该孔瓦斯流量在14:40之前瓦斯流量波动较大,分析原因可能是由于之前打穿层钻孔后钻孔内瓦斯的不均匀涌出。水力冲孔刚开始时瓦斯流量稳定在0.20L/min, 最大值为0.22L/min。从图10中可以看出, 在水力冲孔初期瓦斯的涌出量明显增大但较为稳定。在水力冲孔的中后期却呈现出剧烈的波动, 原因是由于水力冲孔中后期钻孔中的回水携带破碎煤体阻塞回水孔道所致。图4.6 考察孔瓦斯流量变化4.4.4抽采半径水力冲孔抽采半径是水力冲孔钻

22、孔布置的重要依据之一,研究期间,考察了水力冲孔瓦斯抽采半径。由图4.7及表4.3可知,9号钻孔在冲孔抽采40d后, 瓦斯压力依然保持在1.9MPa, 残余瓦斯含量为7.9m/t,分析认为 9号钻孔不属于冲孔抽采半径范围。2号和 5号考察钻孔随时间增加瓦斯压力缓慢下降。钻孔抽采25d后, 2号和 5号钻孔瓦斯压力分别下降至1.3和 0.7MPa, 对应残余瓦斯含量分别为7.1和4.5 m/ t (均小于8m/t); 钻孔抽采40d后, 2号和5号钻孔瓦斯压力分别下降至0.7和0.4MPa (均小于0.74MPa), 对应残余瓦斯含量分别为4.5和3.0m/ t残余瓦斯含量最高降低了70%。图4.

23、7 抽采后瓦斯压力图综合分析表明2号和5号钻孔(2号、5号钻孔与水力冲孔孔底间距均为4.5m)均在水力冲孔抽采半径范围内。13-1煤层水力冲孔后抽采半径为4.5m。为了达到消除煤层的突出危险性的效果, 钻孔抽采的时间最小设置为40d。表4.3 瓦斯含量测定结果(m/t)4.4.5水力冲孔前后瓦斯抽采流量对比分析图4.8为采取水力冲孔措施后和未采取水力冲孔措施的瓦斯抽采流量与时间的变化关系。未采取水力冲孔措施的钻孔瓦斯抽采流量由开始抽采的0.92m/min, 经过15d的抽采后, 其抽采瓦斯纯流量下降至0.31 m/m in, 其衰减系数为0.043d-1,衰减趋势相当明显。而采取水力冲孔后的瓦

24、斯抽采的纯流量由开始抽采时的1.30m3/min, 经过15d的跟踪考察, 其瓦斯抽采流量只减少了0.19 m/m in, 其衰减系数仅为0.014d-1,冲孔后的瓦斯流量衰减系数仅为冲孔前的1/3。根据水力冲孔前后瓦斯探头浓度的变化可知, 在水力冲孔前探头瓦斯体积分数为0.04%, 而在水力冲孔过程中探头瓦斯体积分数变化显著, 平均为0.41% ,最高达到0.76% 。冲孔过程中瓦斯流量为冲孔前的10倍以上,瓦斯抽采效果非常显著。图4.8 冲孔前后瓦斯抽采流量对比5 底板岩巷穿层钻孔5.1底板抽放巷及抽放钻场布置底板抽放巷布置在距煤层法线垂距23m的煤层底板内, 巷道断面规格为3.6m,3.

25、8m,采用锚网喷支护。为加大区域抽放力度, 确保有足够的钻孔工程量和预抽时间, 采取在掘进底抽巷的同时每隔20m在巷道下帮开掘1个4 m深的抽放钻场, 钻场断面规格为3.2m,3.0 m,能够满足打钻需要。5.2穿层抽放钻孔布置(1)布孔原则。钻孔应当在预抽区域内均匀布置,钻孔应穿过煤层全厚遇见顶板为准;钻孔终孔间距应以实测有效抽放半径为基础设计;孔径应尽可能大, 以提高抽放瓦斯浓度;封孔严密, 以提高抽放效果。(2)设计方案。底抽巷内穿层钻孔设计、施工分前期和后期2步进行。第一步前期预抽, 主要是为煤巷掘进防突服务。利用每隔 20 m 掘进的抽放钻场打钻对下顺槽周围煤层瓦斯进行条带区域预抽,

26、 在钻场内布置 5排 7列 35个孔, 钻孔直径 94mm, 沿煤层倾斜方向扇形布孔, 钻孔控制到顺槽轮廓线外上帮 20 m、下帮 10m 范围。钻场、钻孔布置如图5.1所示。第二步后期预抽, 主要是为回采防突服务。为避免打钻与巷道出矸运输的冲突, 待底抽巷掘进贯通形成系统后或煤巷进入施工后, 在底板抽放巷内每隔 10m 布置 1个顶板扇形抽放钻场,每个钻场布置11个孔, 钻孔沿煤层倾斜方向呈扇形布置,钻孔直径94mm, 对整个工作面瓦斯进行区域预抽,可有效解决大斜长工作面中部较难抽放的问题,钻孔布置如图5.2所示。图5.1 底板抽放巷钻场内穿层钻孔剖面布置示意图图5.2 底板抽放巷顶板扇形穿

27、层钻孔剖面布置示意图5.3提高瓦斯抽放效果的技术措施5.3.1实施大直径钻孔从源头上提高瓦斯抽放量遵循 五大一深 抽放模式中大钻孔原则,开孔孔径不得低于94mm,孔间距、排间距均为0.4m,做到横成排纵成列,以便封孔后规范连接。实践证明:增大钻孔直径可以有效提高瓦斯抽放量,过去施工的穿层孔直径只有75mm,孔径较小,瓦斯抽放效果不太乐观,通过提高钻孔直径,单孔浓度达到了80% 以上,取得了很好的抽放效果。5.3.2封孔工艺改进创新众所周知, 钻孔封孔是瓦斯抽放工作中最为关键的环节,也是直接影响抽放效果的环节。八矿以往采用的布缠钢管倒马丽散封孔方法效果很不理想,而且封孔长度仅6m,钻孔抽放浓度就

28、不高,大部分在浓度45%以下,抽放一段时间后,浓度很快就衰减到20%以下,极大程度阻碍了瓦斯抽放工作的开展。为了解决这一问题,八矿自购了多种新型封孔材料,在封孔工艺改进方面进行了2次创新,都取得了显著效果。一是对衰减的低浓度钻孔封孔工艺改进提高钻孔浓度技术创新,具体做法是对井下抽放浓度低于20%的所有钻孔进行掏孔,然后在原来封的钢管内重新续接1根10m长的铝塑管,并预先对外口进行临时封堵, 封堵后,采用专用封孔泵利用2封孔管间隙向孔内注马丽散重新封孔。经过对原抽放钻孔封孔质量的改进,原抽放钻场抽放浓度提高到了30%以上。二是对新施工的瓦斯抽放钻孔封孔工艺全面改进, 淘汰过去落后的封孔方法和封孔

29、材料,采用特制水泡皮 - 马丽散(安尔) -铝塑管三组合封孔技术, 封孔深度由 6 m提高到 10 m,封孔管径由25mm提高到40mm, 并且铝塑管是1根整体管路, 中间不存在任何接口, 保证了钻孔严密不漏气, 具体做法是在1根10m长的铝塑管捆绑上5个特制水泡皮 (每个特制水泡皮 1. 7 m, 为防止出现堵孔现象, 最前端0.7m空余),水泡皮呈兜状捆绑, 将马丽散(安尔)按照1:1的比例调配好倒入已绑好的水泡皮内,随即传入到钻孔内, 将孔口用棉纱堵好, 几秒内就可膨胀, 完成封孔工作。为进一步在封孔工艺上有所突破, 八矿新购进了一批不同尺寸的聚氯乙烯管和连接所需的三通、弯头等, 目前只

30、在 3203底抽巷 2个钻场进行了试验, 由于试验时间短, 暂未发现问题, 待成熟后再进行推广应用。效果分析:通过在对3203底抽巷穿层孔封孔工艺的改进, 大幅提高了瓦斯抽放浓度, 新钻孔单孔抽放浓度均在80% 以上, 甚至高达 100%, 抽放12个月后钻场瓦斯抽放浓度仍然保持在 50% 以上,抽放效果较好。实践表明:大管径、深封孔 是提高瓦斯抽放效果最直接、最有效的措施, 也是今后瓦斯抽放工作发展的必然趋势。5.3.3集气箱的成功应用八矿原来使用的钻场连接方式是在2根并行焊接的短节上焊接多个三通接头用软胶管与钻孔连接。若钻孔略有积水就会堵塞管路造成孔口负压低,从而影响瓦斯预抽效果。针对这一

31、问题,该矿成立了技术攻关小组,经过不断探讨、比拟、分析,成功的研制出抽放钻场 集气箱,该装置能够使钻孔内瓦斯、水、煤岩粉三者进行气、水、物自然分离,瓦斯被抽走,积水和杂物沉淀后通过排水孔排出,彻底解决了抽放钻场、管路积水问题, 保证了预抽效果。(1)结构特点与操作程序。集气箱由长1200mm、宽680 mm、高760mm的钢板焊接而成,在集气箱顶部和一侧焊接35个连接钻孔的直通, 箱体顶部焊接1个短节与抽放管路连接抽放,在短面1侧焊接1个排气口和放水口。连抽后安设闸阀进行控制,需要进行放水时,关闭钻场阀门,打开放水阀门和排气阀门, 放水结束后, 操作顺序反之。(2)作用原理。钻孔在抽放过程中,

32、会产生大量的瓦斯、水和少量的煤岩粉。根据三者物理性质,煤岩粉、水会自动沉积到箱体底部,而瓦斯密度小,漂浮在箱体顶部,在抽放负压的作用下,随抽放系统被抽走, 积水和杂物沉淀后通过排水孔排出, 形成气、水、物自然分离现象。(3)连接方式。集气箱与钻孔连接采用钢丝管连接,接口处不再使用传统的铁丝捆绑方式,改为钢丝箍-螺丝固定方式,这种连接方式优点是:钢丝弹性性能较好,可以有效杜绝漏气现象;可以定期紧固螺丝,可以保证钻孔时常处于紧密封闭状态。(4)效果分析。通过在3203底板抽放巷安装集气箱后,效果十分显著,瓦斯抽放浓度、抽放量明显提高,消除了抽放管路积水、连接管接口漏气现象,保证了抽放系统的稳定;每

33、班仅需进行1次放水就可保证抽放系统正常运转;相对自动放水器而言,成本低,操作简单、故障率低,大大节省了人力、物力、财力。5.3.4 钻场管理集气箱上每个连接管上都焊接有观测孔, 实现了单孔观测。每个钻场汇合处均安设 1个孔板流量计进行计量, 以便对单孔、钻场抽放数据异常情况进行观测、分析、采取有效措施进行处理。钻场抽放后, 实行挂牌管理。6 工作面底抽巷穿层钻孔偏斜的特征与机理6.1影响钻孔偏斜的地质因素对工作面底抽巷穿层钻孔 施工的钻孔质量必须保证要求,才能达到目的。在施工每组单元时要进行评价,究其原因两方面:一是客观因素一 一地质因素,另是主观因素工艺技术。就地质因素而言主要是钻进岩层的硬

34、度及结构构造。岩层的层理、片理、裂隙、断层、软硬互层等结构构造使岩层具有不均性,钻头在孔底受力不平衡,引起钻孔偏斜。其中层理与片理和软硬互层对钻孔偏斜最具有影响力。6.2钻孔偏斜受力分析钻孔穿层通过砂泥互层时钻孔弯曲影响取决于钻孔轴线的遇层角6(指钻孔轴线与岩层层面法线的夹角的余角)和砂泥岩层的硬度差。由于钻头作用在层面上的压力可分解为垂直于层面的分力C和平行于层面的分力N。N是钻头在岩层面上的下滑力,当其力大于钻头钻头与岩层面的摩擦阻力(F)时,钻具便沿层面下滑,钻孔将顺岩层面方向弯曲。当越小,下滑力(N=PC0S)越大。钻具沿层面下滑 的临界遇层角(-般2O)主要j、i对钢的摩擦系数有关,

35、这又取决于岩石性质。当钻头进入层面时,唇面受力不平衡,靠层面上硬岩(砂岩)端的合力大,靠软岩(泥岩)端的孔底反力的合力小,将产生一倾倒力矩M扭转钻头,使其沿着地层E倾方向一即垂直于层面方向弯曲。倾倒力矩可由以下公式计算:作用于全面钻头唇面上的倾倒力矩(6.1)式中:一 硬岩 的压入硬度 ;一软岩的压入硬度;R一钻头半径;X钻头轴线至软硬岩层接触面的距离作用于取心钻头唇面上的倾倒力矩 :(6.2)式中: 钻孔外半径;钻孔内半径;系数,当时,=0。从式(6.1)、(6.2)可见,倾倒力矩与软硬岩层的硬度差()成正比;随着钻头唇面与硬 岩层接触面增加 (减小),倒转力矩增大;当钻头唇面与硬岩层接触面

36、相等(=0)时,倒转力矩达到最大值。这就为什么钻孔(斜孔)在泥岩与中砂岩面处总是向泥岩方偏斜的原因。存岩层松软、极破碎等地层钻进时,由于钻具在重力作用下,钻孔有下垂趋势。6.3钻孔偏斜的预防1、小角度钻孔开孔(开孔后2m)加扶正器:其规格为直径长度=110mm0.55m (必须加扶正器施工),扶正器使用示意图如下所示:图6.1 扶正器使用示意图2、减小残尺量,钻机安装尽量靠近开孔帮。3、确保设备安装及开孔质量设备安装前地 基要平整、坚实 ,基台木要水平、稳固;开孔时轻压慢进 ,确保开孔质量 ,开孔 1m后 ,测量孔口钻杆角度 。对误差05。的必须重新调整角度或重新开孔施工。4、进入砂岩段施 工

37、前,必须均匀给压 (压力不宜过大),待施工进入砂岩4m后,方可适当增大压力。5、小角度钻 孔施工如不见煤 ,补打钻孔时倾角在原设计基础上提高 12。开孔。7 底抽巷“一巷两用技术7.1底抽巷的布置特点底抽巷瓦斯抽采技术多用于瓦斯较难抽放的煤层或突出煤层,一般将巷道布置在欲 回采工作面的下方,服务时间从巷道开拓完成开始,到工作面开采完结束,在抽采欲掘进巷道影响范围内的瓦斯以及煤层回采过程中的瓦斯效果显著。7.2“一巷两用”技术要点底抽巷“一巷两用”技术适用于有下保护层开采的条件,是通过底抽巷下向钻孔抽采保护层采空区和工作面顶板裂隙带内的瓦斯钻孔位置是否准确布置在冒落带或裂隙带内是瓦斯抽采效果能否

38、得到保证的关键 布置方式如图 2所示,在底抽巷内平均每隔 25m施工一个钻场,每个钻场内向保护层回风巷方向布置5个下向钻孔,钻孔直径91iTlln为 了保证对上隅角瓦斯浓度的控制,终孔距离上风巷525m处为了避免终孔时出现不返泥浆及工作面淋水现象,终孔应设计在距离煤层顶板上 35m的冒落带内封孔时采用海带封堵工艺,海带遇水膨胀后再注水泥砂浆进行 封孔,为保证封孔质量,封孔长度不小于 12m施工下向钻孔时钻进能力 、排渣能力和终孔定位等条件的限制,对于钻孔设备及技术提出了一些特殊要求,宜采用 ZYG一150型钻机,但为了将岩粉及时排出孔外,防止堵孔,钻进的冲洗液应 由清水改为泥浆,泥浆除了防止堵

39、孔之外,还能护住孔壁,防治出现垮孔现象 。为了克服通风负压,建议使用高负压大流量2BE一303型抽放泵及直径 250lain大管路进行抽放。图7.1 底抽巷“一巷两用”布置示意图7.3预期效果首采保护层时,多数矿井都会采用顶板走向钻孔瓦斯抽采方法,采空区埋管瓦斯抽采方法,本煤层沿层瓦斯抽采方法等多种方法,在仍然不能解决工作面瓦斯超限的问题的情况下,利用被保护层的底抽巷下 向钻孔抽采保护层瓦斯,是一种可行的方法。通过底抽巷下 向钻孔抽采保 护层工作面和采空区的瓦斯,钻孔的有效期可以贯穿整个采掘过程,作用时间长。不仅能够与已有瓦斯抽采方法实现互补,增加保护层的瓦斯抽采量,降低工作 面的瓦斯浓度,还能够提高煤层 的回采和掘进速度,减少风排瓦斯量,改善采掘施工的作业环境,确保施工人员的安全。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 生活休闲 > 在线阅读


备案号:宁ICP备20000045号-2

经营许可证:宁B2-20210002

宁公网安备 64010402000987号