必修一各题型例题加变式.doc

上传人:小飞机 文档编号:4394669 上传时间:2023-04-21 格式:DOC 页数:22 大小:990.50KB
返回 下载 相关 举报
必修一各题型例题加变式.doc_第1页
第1页 / 共22页
必修一各题型例题加变式.doc_第2页
第2页 / 共22页
必修一各题型例题加变式.doc_第3页
第3页 / 共22页
必修一各题型例题加变式.doc_第4页
第4页 / 共22页
必修一各题型例题加变式.doc_第5页
第5页 / 共22页
点击查看更多>>
资源描述

《必修一各题型例题加变式.doc》由会员分享,可在线阅读,更多相关《必修一各题型例题加变式.doc(22页珍藏版)》请在三一办公上搜索。

1、必修一各题型例题加变式题型一、集合例题1:已知集合M0,1,2,3,4,N1,3,5,PMN,则P的子集共有()A2个 B4个C6个 D8个【解析】选B.M0,1,2,3,4,N1,3,5,MN1,3MN的子集共有224个变式1设A2,1,x2x1,B2y,4,x4,C1,7,且ABC,求x、y的值【解析】解:ABC1,7,必有7A,7B,1B.即有x2x17x2或x3.当x2时,x42,又2A,2AB,但2C,不满足ABC,x2不符合题意当x3时,x47,2y1y.因此,x3,y.变式2已知,且,求实数的取值范围【解析】解:,或当时,当,解得由上述知: 例题2:已知集合(1)若的取值范围;(

2、2)若的值【解析】(1)当时,B为空集,不合题意当时,应满足当时,应满足时,(2)要满足,显然且时成立,此时,而,故所求的值为3【点评】同不等式有关的集合问题是高考命题的热点之一,也是高考常见的命题形式,且多为含参数的不等式问题,需讨论参数的取值范围,主要考查分类讨论的思想,此外,解决集合运算问题还要注意数形结合思想的应用变式3:设全集是实数集,则图中阴影部分所表示的集合是 ( )A BC D【答案】C【点评】本题考查了集合之间的关系、集合的交集、补集的运算,考查了同学们借助于图解决集合问题的能力变式4:定义集合运算:设,则集合的所有元素之和为 ( )A0 B2 C3 D6【解析】本题为新定义

3、问题,可根据题中所定义的的定义,求出集合,而后再进一步求解由的定义可得:,故选D【点评】本题给出了集合一种新的运算,只要读懂新的运算法则,此类题就不难解决题型二、函数的概念及其性质1、函数的定义域问题例题1、函数y的定义域为 ()A. 4,1 B. 4,0)C. (0,1 D. 4,0)(0,1【解析】求y的定义域,即4,0)(0,1. 答案:D变式1、函数y的定义域为 ()A. (4,1) B. (4,1)C. (1,1) D. (1,1【解析】定义域 1x1. 答案:C变式2、,则 【答案】变式3、设函数f(x)则的值为 ()A. BC. D18【答案】A2、函数的值域问题例题:分别求下列

4、函数的值域:(1)y;(2)yx22x(x0,3);(3);(4)y.【解析】(1)分离变量法将原函数变形为y2.x3,0.y2,即函数值域为y|yR且y2.(2)配方法y(x1)21,根据二次函数的性质,可得原函数的值域是3,1.(3)换元法令(),则, 所以因为当,即时,无最小值。所以函数的值域为。 (4)分离常数法y12x1,02,111,所求值域为(1,1).3、三要素间的关系例题:下列各组函数中,表示同一函数的是( )A BC D【答案】C4、函数单调性例题1.(2009福建高考)下列函数f(x)中,满足“对任意x1,x2(0,),当x1f(x2)”的是 ()A. f(x) B. f

5、(x)(x1)2C. f(x)ex D. f(x)ln(x1)【解析】对任意的x1,x2(0,),当x1f(x2),f(x)在(0,)上为减函数.答案:A例题2、如果函数f(x)x22(a1)x2在区间(,4上是减函数,则实数a的取值范围是 ()A. 3,) B. (,3C. (,5 D. 3,)【解析】f(x)x22(a1)x2的对称轴为x1a,f(x)在(,1a上是减函数,要使f(x)在区间(,4上是减函数,则只需1a4,即a3.答案:B例题3、已知函数f(x)=x+,x0,证明当0x1时,函数f(x)是减函数;当x1时,函数f(x)是增函数.【解析】证明:任取x1、x2(0,+)且x1x

6、2,则f(x1)f(x2)=(x1)(x2+)=(x1x2)+=,x1x2,x1x20.当0x1x21时,x1x2-10,f(x1)f(x2)0.f(x1)f(x2),即当0x0,f(x1)f(x2)0.f(x1)f(x2),即当x1时,函数f(x)是增函数.变式1、函数ylog(43xx2)的一个单调递增区间是 ()A. (, B. ,)C. (1,) D. ,4)【解析】由t43xx20得1x4,即函数ylog(43xx2)的定义域为(1,4),又ylogt是减函数,t43xx2在,4)上递减,所以函数ylog(43xx2)在,4)上递增.答案:D变式2、已知函数f(x)(a1).(1)若

7、a0,则f(x)的定义域是;(2)若f(x)在区间(0,1上是减函数,则实数a的取值范围是.【解析】(1)当a0且a1时,由3ax0得x,即此时函数f(x)的定义域是(,;(2)当a10,即a1时,要使f(x)在(0,1上是减函数,则需3a10,此时1a3.当a10,即a1时,要使f(x)在(0,1上是减函数,则需a0,此时a0.综上所述,所求实数a的取值范围是(,0)(1,3.答案:(1)(, (2)(,0)(1,35、函数的奇偶性例题:已知yf(x)是定义在R上的奇函数,则下列函数中为奇函数的是 ()yf(|x|);yf(x);yxf(x);yf(x)x.A. B. C. D. 【解析】由

8、奇函数的定义验证可知正确,选D.答案:D变式1:已知函数f(x)ax4bcosxx,且f(3)7,则f(3)的值为 ()A. 1 B. 7C. 4 D. 10【解析】设g(x)ax4bcosx,则g(x)g(x).由f(3)g(3)3,得g(3)f(3)34,所以g(3)g(3)4,所以f(3)g(3)3431.答案:A变式2:设函数f(x)(xR)为奇函数,f(1),f(x2)f(x)f(2),则f(5) ()A. 0 B. 1C. D. 5【解析】由f(1),对f(x2)f(x)f(2),令x1,得f(1)f(1)f(2).又f(x) 为奇函数,f(1)f(1),于是f(2)2f(1)1;

9、令x1,得f(3)f(1)f(2),于是f(5)f(3)f(2).答案:C6、函数的性质综合应用例题1:已知f(x)是定义在(,)上的偶函数,且在(,0上是增函数,设af(log47),bf(3),cf(0.20.6),则a,b,c的大小关系是 ()A. cba B. bcab D. ab1,|3|log231,00.20.6|log47|0.20.6|.又f(x)在(,0上是增函数且为偶函数, f(x)在0,)上是减函数.cab.答案:C变式1:若是奇函数,且在(0,)上是增函数,又,则的解是()A. B. C. D. 【解析】选D。由题可知:f(x)是奇函数,(0,)上是增函数,图像关于原

10、点对称要使,则当x1时,f(x)0,由图可知当x0,由图可知【点评】此题考查奇函数的图像特点。例题2:已知函数f(x)的定义域为(0,),且对任意的正实数x,y都有f(xy)f(x)f(y),且当x1时,f(x)0,f(4)1,(1)求证:f(1)0; (2)求f(); (3)解不等式f(x)f(x3)1.【解析】解:(1)证明:令x4,y1,则f(4)f(41)f(4)f(1).f(1)0.(2) f(16)f(44)f(4)f(4)2,f(1)f(16)f()f(16)0, 故f()2.(3)设x1,x20且x1x2,于是f()0,f(x1)f(x2)f()f(x2)f(x2). f(x)

11、为x(0,)上的增函数.又f(x)f(x3)fx(x3)1f(4), 3x4.原不等式的解集为x|3x4.例题3:已知函数,且(1)求m的值;(2)证明的奇偶性;(3)判断在上的单调性,并给予证明;【解析】(1),. (2)因为,定义域为,关于原点成对称区间. 又,所以是奇函数. (3)设,则 因为,所以, 所以,因此在上为单调增函数. 变式:已知函数的定义域为,且对任意,都有,且当时,恒成立,证明:(1)函数是上的减函数;(2)函数是奇函数 【解析】证明:(1)设,则,而函数是上的减函数(2)由得即,而,即函数是奇函数 【点评】在判断一个函数的单调性和奇偶性时,要严格按照单调性和奇偶性的定义

12、来判断在判断此题函数的单调性时,需将再用题目给的关系式化为作差法的第一步题型三、基本初等函数I1、指数函数与对数函数的定义域、值域问题例题1:求下列函数的定义域和值域(1) 2; (2)(); (3)10;(4); (5);【解析】提示:由于指数函数y=ax,(a0且a1)的定义域是R,所以这类类似指数函数的函数的定义域要借助指数函数的定义域来求,教师适时点拨和提示,求定义域,只需使指数有意义即可,转化为解不等式.(1)令x-40,则x4,所以函数y=2的定义域是xRx4, 又因为0,所以21,即函数y=2的值域是y|y0且y1.(2)因为-|x|0,所以只有x=0. 因此函数y=()的定义域

13、是xx=0. 而y=()=()0=1,即函数y=()的值域是yy=1.(3)令0,得0, 即0,解得x-1或x1, 因此函数y=10的定义域是xx0.变式:函数恒过定点_ .【解析】因为y=ax过点(0,1),所以当x=0时,y=0+5=5,所以原函数过定点(-5,2)【点评】解决定点问题,关键是理解指数与对数函数的定点2、解指数式、对数式方程例题:已知,则( ) 2 4 8 32【解析】例题:已知 ,求的值 ; ,求的值。【解析】 解:原方程可化为,x2=2,解得x=或x=.经检验,x=是原方程的解,x=不合题意,舍去. x=1或x= 6变式:解方程:(1); (2)【解析】(1)解:原方程

14、为63-x27=0,(3-x3)(3-x9)=0.3-x30,由3-x9=0得3-x=32.故x=2是原方程的解.(2)解:原方程为lg2(x10)3lg(x10)4=0,lg(x10)4lg(x10)1=0.由lg(x10)=4,得x10=10000,x=9990;由lg(x10)=1,得x10=0.1,x=9.9.检验知: x=9990和9.9都是原方程的解.3、指数函数与对数函数的图像例题1:在同一坐标系中画出函数的图像,可能正确的是( )【答案】Dy=dxy=cxy=bxy=axOyx变式:(1)如图,设a,b,c,d0,且不等于1,y=ax,y=bx,y=cx,y=dx,在同一坐标系

15、中的图象如图,则a,b,c,d的大小顺序( )A、abcd B、abdcC、badc D、bacf(0)f(-3)【点评】根据待定系数的多少来确定构建方程的个数是解题的关键,这是方程思想的运用.例题2:解不等式:(1); (2)(3)【解析】(1)(2)(3)由题意得又原不等式可化为例题3:比较下列两个数的大小:(1); (2); (3); (4),2.【解析】利用指数函数的性质对两个数进行大小的比较:对(1)因为函数y=3x在R上是增函数,0.80.7,所以30.830.7;对(2)因为函数y=0.75x在R上是减函数,0.1-0.1,所以0.75-0.10.750.1;对(3)由指数函数的

16、性质知1.80.61.80=1=0.800.81.6,所以1.80.60.81.6;对(4)由指数函数的性质知()()0=1=202,所以()2.【点评】在利用指数函数的性质对两个数进行大小比较时,首先把这两个数看作指数函数的两个函数值,利用指数函数的单调性比较。若两个数不是同一函数的两个函数值,则寻求一个中间量,两个数都与这个中间量进行比较,这是常用的比较数的大小的方法,然后得两个数的大小,数学上称这种方法为“中间量法”.变式:比较大小设alog0.70.8,blog1.10.9,c1.10.9,则a、b、c的大小顺序是( )A、abc B、bca C、bac D、cba【解析】选C。因为0

17、a1,b1,所以ba0且a1)有两个零点,则实数a的取值范围是 【解析】设函数a1)和函数,则函数f (x)=ax -x-a(a0且a1)有两个零点,就是函数 a1)与函数有两个交点,由图象可知当时两函数只有一个交点,不符合,当时,因为函数的图象过点(0,1),而直线所过的点(0,a)一定在点(0,1)的上方,所以一定有两个交点,所以实数a的取值范围是【点评】本题考查了指数函数的图象与直线的位置关系,隐含着对指数函数的性质的考查,根据其底数的不同取值范围而分别画出函数的图象进行解答变式2:设二次函数,方程的两根和满足(I)求实数的取值范围;(II)试比较与的大小并说明理由【解析】()令,则由题

18、意可得故所求实数的取值范围是(II),令当时,单调增加,当时,即【点评】本题主要考查二次方程根的分布和二次函数的基本性质,注意数形结合,二次方程根的分布问题需从四个方面考虑:开口方向;对称轴与区间相对位置;判别式;区间端点函数值的正负2、函数模型及其应用例题1:某汽车运输公司购买了一批豪华大客车投入客运,据市场分析,每辆客车营运的总利润y万元与营运年数x(xN)的关系为yx212x25,则每辆客车营运多少年报废可使其营运年平均利润最大()A2 B4 C5D6【解析】设年平均利润为g(x),则g(x)12(x)x2 10,当x,即x5时,g(x)max2.答案:C例题2某种放射性元素,100年后

19、只剩原来质量的一半,现有这种元素1克,3年后剩下()A. 克 B(10.5%)3克 C0.925克 D. 克【解析】设放射性元素后一年比前一年减少了x,则100年后只剩原来质量的a(1x)100,依题意得:a(1x)100a,1x,3,故选D.答案:D【方法与技巧总结】1、确定集合的“包含关系”与求集合的“交、并、补”是学习集合的中心内容,解决问题时应根据问题所涉及的具体的数学内容来寻求方法2、函数图象的几何特征与函数性质的数量特征紧密结合,有效地揭示了各类函数和定义域、值域、单调性、奇偶性等基本属性,体现了数形结合的特征与方法,为此,既要从定形、定性、定理、定位各方面精确地观察图形、绘制图形,又要熟练地掌握函数图象的平移变换、对称变换;3、常见的函数数字特征有:(1)函数奇偶性:奇函数;偶函数(2)函数单调性:单调递增:或;单调递减:或(3)对称性:关于y轴对称:;关于原点对称:;关于直线对称:或;关于点对称:或4、求指数函数与对数函数的定义域、值域、单调区间、及奇偶性的判定都依赖于定义法、数形结合及函数本身的性质,应熟练掌握指数函数与对数函数的相关性质5、函数零点的求法:(代数法)求方程的实数根;(几何法)对于不能用求根公式的方程,可以将它与函数的图象联系起来,并利用函数的性质找出零点 22 / 22

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 生活休闲 > 在线阅读


备案号:宁ICP备20000045号-2

经营许可证:宁B2-20210002

宁公网安备 64010402000987号