_实际问题与二次函数(2).ppt

上传人:小飞机 文档编号:4482384 上传时间:2023-04-24 格式:PPT 页数:15 大小:473KB
返回 下载 相关 举报
_实际问题与二次函数(2).ppt_第1页
第1页 / 共15页
_实际问题与二次函数(2).ppt_第2页
第2页 / 共15页
_实际问题与二次函数(2).ppt_第3页
第3页 / 共15页
_实际问题与二次函数(2).ppt_第4页
第4页 / 共15页
_实际问题与二次函数(2).ppt_第5页
第5页 / 共15页
点击查看更多>>
资源描述

《_实际问题与二次函数(2).ppt》由会员分享,可在线阅读,更多相关《_实际问题与二次函数(2).ppt(15页珍藏版)》请在三一办公上搜索。

1、实际问题与二次函数(2)明月中学,(1)请用长20米的篱笆设计一个矩形的菜园。,(2)怎样设计才能使矩形菜园的面积最大?,(0 x10),(1)求y与x的函数关系式及自变量的取值范围;,(2)怎样围才能使菜园的面积最大?最大面积是多少?,如图,在一面靠墙的空地上用长为24米的篱笆,围成中间隔有二道篱笆的长方形花圃,设花圃的宽AB为x米,面积为S平方米。(1)求S与x的函数关系式及自变量的取值范围;(2)当x取何值时所围成的花圃面积最大,最大值是多少?(3)若墙的最大可用长度为8米,则求围成花圃的最大面积。,解:,(1)AB为x米、篱笆长为24米 花圃宽为(244x)米,(3)墙的可用长度为8米

2、,(2)当x 时,S最大值 36(平方米),Sx(244x)4x224 x(0 x6),0244x 6 4x6,当x4cm时,S最大值32 平方米,(1).设矩形的一边AB=xm,那么AD边的长度如何表示?(2).设矩形的面积为ym2,当x取何值时,y的最大值是多少?,何时面积最大,如图,在一个直角三角形的内部作一个矩形ABCD,其中AB和AD分别在两直角边上.,M,N,(1).设矩形的一边BC=xm,那么AB边的长度如何表示?(2).设矩形的面积为ym2,当x取何值时,y的最大值是多少?,何时面积最大,如图,在一个直角三角形的内部作一个矩形ABCD,其顶点A和点D分别在两直角边上,BC在斜边

3、上.,xm,bm,何时窗户通过的光线最多,某建筑物的窗户如图所示,它的上半部是半圆,下半部是矩形,制造窗框的材料总长(图中所有的黑线的长度和)为15m.当x等于多少时,窗户通过的光线最多(结果精确到0.01m)?此时,窗户的面积是多少?,例:有一根直尺的短边长2cm,长边长10cm,还有一块锐角为45的直角三角形纸板,其中直角三角形纸板的斜边长为12cm按图141的方式将直尺的短边DE放置在与直角三角形纸板的斜边AB上,且点D与点A重合若直尺沿射线AB方向平行移动,如图142,设平移的长度为x(cm),直尺和三角形纸板的重叠部分(图中阴影部分)的面积为S cm 2)(1)当x=0时,S=_;当

4、x=10时,S=_;(2)当0 x4时,如图142,求S与x的函数关系式;(3)当6x10时,求S与x的函数关系式;(4)请你作出推测:当x为何值时,阴影部分的面积最大?并写出最大值,1.某工厂为了存放材料,需要围一个周长160米的矩形场地,问矩形的长和宽各取多少米,才能使存放场地的面积最大。2.窗的形状是矩形上面加一个半圆。窗的周长等于6cm,要使窗能透过最多的光线,它的尺寸应该如何设计?,练一练:,3.用一块宽为1.2m的长方形铁板弯起两边做一个水槽,水槽的横断面为底角120的等腰梯形。要使水槽的横断面积最大,它的侧面AB应该是多长?,4.如图,规格为60 cm60 cm的正方形地砖在运输

5、过程中受损,断去一角,量得AF=30cm,CE45 cm。现准备从五边形地砖ABCEF上截出一个面积为S的矩形地砖PMBN。(1)设BN=x,BM=y,请用含x的代数式表示y,并写出x的取值范围;(2)请用含x的代数式表示S,并在给定的直角坐标系内画出该函数的示意图;(3)利用函数图象回2答:当x取何值时,S有最大值?最大值是多少?,图,5.在矩形ABCD中,AB6cm,BC12cm,点P从点A出发,沿AB边向点B以1cm/秒的速度移动,同时,点Q从点B出发沿BC边向点C以2cm/秒的速度移动。如果P、Q两点在分别到达B、C两点后就停止移动,回答下列问题:(1)运动开始后第几秒时,PBQ的面积

6、等于8cm2(2)设运动开始后第t秒时,五边形APQCD的面积为Scm2,写出S与t的函数关系式,并指出自变量t的取值范围;t为何值时S最小?求出S的最小值。,6.如图,在平面直角坐标系中,四边形OABC为菱形,点C的坐标为(4,0),AOC=60,垂直于x轴的直线l从y轴出发,沿x轴正方向以每秒1个单位长度的速度运动,设直线l与菱形OABC的两边分别交于点M、N(点M在点N的上方).,(1)求A、B两点的坐标;,(2)设OMN的面积为S,直线l运动时间为t秒(0t6),试求S 与t的函数表达式;,(3)在题(2)的条件下,t为何值时,S的面积最大?最大面积是多少?,7.二次函数y=ax+bx+c的图象的一部分如图所示,已知它的顶点M在第二象限,且经过点A(1,0)和点B(0,1)。(04杭州)(1)请判断实数a的取值范围,并说明理由;,2,x,y,1,B,1,A,O,-1a0,1.理解问题;,“二次函数应用”的思路,回顾上一节“最大利润”和本节“最大面积”解决问题的过程,你能总结一下解决此类问题的基本思路吗?与同伴交流.,2.分析问题中的变量和常量,以及它们之间的关系;,3.用数学的方式表示出它们之间的关系;,4.做数学求解;,5.检验结果的合理性,拓展等.,

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 生活休闲 > 在线阅读


备案号:宁ICP备20000045号-2

经营许可证:宁B2-20210002

宁公网安备 64010402000987号