最新2.4二次函数的应用第1课时教学设计汇编.doc

上传人:sccc 文档编号:4622890 上传时间:2023-05-02 格式:DOC 页数:7 大小:130KB
返回 下载 相关 举报
最新2.4二次函数的应用第1课时教学设计汇编.doc_第1页
第1页 / 共7页
最新2.4二次函数的应用第1课时教学设计汇编.doc_第2页
第2页 / 共7页
最新2.4二次函数的应用第1课时教学设计汇编.doc_第3页
第3页 / 共7页
最新2.4二次函数的应用第1课时教学设计汇编.doc_第4页
第4页 / 共7页
最新2.4二次函数的应用第1课时教学设计汇编.doc_第5页
第5页 / 共7页
点击查看更多>>
资源描述

《最新2.4二次函数的应用第1课时教学设计汇编.doc》由会员分享,可在线阅读,更多相关《最新2.4二次函数的应用第1课时教学设计汇编.doc(7页珍藏版)》请在三一办公上搜索。

1、第二章 二次函数二次函数的应用(第1课时)教学设计说明深圳市育才二中 甄微微一、学生知识状况分析在本章前,学生已通过探索变量之间的关系、探究一次函数和反比例函数,逐步建立了函数的基础知识,初步积累了研究函数性质的方法及用函数观点处理实际问题的经验.在本章的学习中,学生已研究了二次函数及其图象和性质,并掌握了求二次函数最大(小)值的一些方法,这些知识都为本节课的学习奠定了良好的知识基础.二、教学任务分析教学目标知识目标:能够分析和表示不同背景下实际问题中变量之间的二次函数关系,并能够运用二次函数的知识解决实际问题中的最大(小)值能力目标:1通过分析和表示不同背景下实际问题中变量之间的二次函数关系

2、,培养学生的分析判断能力2通过运用二次函数的知识解决实际问题,培养学生的数学应用能力情感态度与价值观:1经历探究长方形和窗户透光最大面积问题的过程,获得利用数学方法解决实际问题的经验,并进一步感受数学模型思想和数学的应用价值2能够对解决问题的基本策略进行反思,形成个人解决问题的风格3进一步体会数学与人类社会的密切联系,了解数学的价值,增进对数学的理解和学好数学的信心,具有初步的创新精神和实践能力教学重点1经历探究长方形和窗户透光最大面积问题的过程,获得利用数学方法解决实际问题的经验,并进一步感受数学模型思想和数学的应用价值2能够分析和表示不同背景下实际问题中变量之间的二次函数关系,并能够运用二

3、次函数的知识解决实际问题教学难点能够分析和表示不同背景下实际问题中变量之间的二次函数关系,并能运用二次函数的有关知识解决最大(小)面积问题三、教学过程分析一、复习回顾(配方法)(公式法)求下列二次函数的顶点坐标,并说明随的变化情况:【设计意图】:引导学生复习前面所学过的内容,由于学习本节课所用的基本知识点是求二次函数的最值,因此和同学们一起复习二次函数最值的求法,以及二次函数的增减性,为本节课的学习做好准备.二、探究应用1、情境引入(1) 请用长20米的篱笆设计一个矩形的菜园.(2)怎样设计才能使矩形菜园的面积最大?【设计意图】:通过学生所熟悉的图形,引入新课,使学生初步了解解决最大面积问题的

4、一般思路.例1.如图,在一面靠墙的空地上用长为24米的篱笆,围成中间隔有二道篱笆的长方形花圃,设花圃的宽AB为米,面积为S平方米.(1)求S与的函数关系式及自变量的取值范围;(2)当取何值时所围成的花圃面积最大,最大值是多少?(3)若墙的最大可用长度为8米,求围成花圃的最大面积 .ABCD【设计意图】:在上一个问题的基础上对问题情境进行变化,增大难度,同时板书解题过程,让学生明确规范的书写过程.2、变式探究一:如图,在一个直角三角形的内部画一个矩形ABCD,其中AB和AD分别在两直角边上,AN=40m,AM=30m,(1).设矩形的一边AB=xm,那么AD边的长度如何表示?(2).设矩形的面积

5、为,当取何值时,的最大值是多少?CBDANMDABCMPN变式探究二:在上一个问题中,如果把矩形改为如图所示的位置,其顶点A和点D分别在两直角边上,BC在斜边上.其它条件不变,那么矩形的最大面积是多少?变式探究三:如图,已知ABC是一等腰三角形铁板余料,AB=AC=20cm,BC=24cm.若在ABC上截出一矩形零件DEFG,使得EF在BC上,点D、G分别在边AB、AC上.问矩形DEFG的最大面积是多少?ABCDEFG【设计意图】:通过由学生讨论怎样用直角三角形剪出一个最大面积的矩形入手,由学生动手画出两种方法,和同学一起从问题中抽象出二次函数的模型,并求其最值,同时通过两种情况的分析,训练学

6、生的发散思维能力,关键是教会学生方法,也是这类问题的难点所在,即怎样设未知数,怎样转化为我们熟悉的数学问题.在此基础上对变式三进行探究,进而总结此类题型,得出解决问题的一般方法.例2.在矩形ABCD中,AB6,BC12,点P从点A出发沿AB边向点B以1/秒的速度移动,同时点Q从点B出发沿BC边向点C以2/秒的速度移动.如果P、Q两点在分别到达B、C两点后就停止移动,设运动时间为t秒(0t6),回答下列问题: (1)运动开始后第几秒时,PBQ的面积等于8;ABCDPQ (2)设五边形APQCD的面积为S,写出S与t的函数关系式,t为何值时S最小?求出S的最小值.【设计意图】:将动点问题引入,使学

7、生进一步增强二次函数的应用意识,提升思维能力.三、归纳总结“二次函数应用”的思路:1.理解问题;2.分析问题中的变量和常量,以及它们之间的关系;3.用数学的方式表示出它们之间的关系;4.运用数学知识求解;5.检验结果的合理性, 给出问题的解答.四、巩固练习习题2.8 第1题1.一根铝合金型材长为6m,用它制作一个“日”字型的窗框,如果恰好用完整条铝合金型材,那么窗架的长、宽各为多少米时,窗架的面积最大?五、拓展提升1.如图, 在RtABC中,ACB=90,AB=10,BC=8,点D在BC上运动(不运动至B,C),DEAC,交AB于E,设BD=,ADE的面积为.(1)求与的函数关系式及自变量的取

8、值范围;(2)为何值时,ADE的面积最大?最大面积是多少?2.有一根直尺的短边长2,长边长10,还有一块锐角为45的直角三角形纸板,其中直角三角形纸板的斜边长为12按图1的方式将直尺的短边DE放置在直角三角形纸板的斜边AB上,且点D与点A重合若直尺沿射线AB方向平行移动,如图2,设平移的长度为(),直尺和三角形纸板的重叠部分(即图中阴影部分)的面积为S (1)当=0时,S=_; 当= 10时,S =_;(2)当0 4时,如图2,求S与的函数关系式;(3)当610时,求S与的函数关系式;(4)请你作出推测:当为何值时,阴影部分的面积最大?并写出最大值ABC备选图二xFEGABC图2答案 EABC

9、备选图一B凝血酶原时间检查外源性凝血系统凝血因子消耗情况图1(三)201年11月20日,甲公司购进一台需要安装的A设备,取得的增值税专用发票上注明的设备价款为950万元,可抵扣增值税进项税额为l615 万元,款项已通过银行支付。安装A设备时,甲公司领用原材料36万元(不含增值税额),支付安装人员工资14万元。201年12月30日,A设备达到预 定可使用状态。A设备预计使用年限为5年,预计净残值率为5,甲公司采用双倍余额递减法计提折旧。(D)16() D-二聚体(D-dimer)是纤溶酶分解纤维蛋白的产物。只有当凝血因子I。首先被凝血酶分解产生纤维蛋白多聚体,然后纤溶酶分解纤维蛋白多聚体,最后才

10、能生成D-二聚体。换言之,只有在继发性纤溶亢进时,才会产生D-二聚体。因此,D-二聚体是反映继发性纤溶亢进的重要指标。E5() 红细胞破坏后,释放ADP入血浆。ADP作为血小板激活剂,具有促进血小板黏附、聚集和促进血小板释放血小板第3因子和第4因子等方面的作用,可导致凝血。F9、ERP指的是 ,它能够更好地满足企业 的需求。C题解 在DIC发病中,早期凝血过程被激活,血液处于高凝阶段,形成大量微血栓。随着凝血过程的激活,凝血物质不断被消耗,同时继发性纤溶活性不断地增强,故在DIC晚期时血液又转为低凝状态,临床发生多器官明显出血。B【解析】:A六、谈谈本节课你的收获【解析】:某工资处理系统800

11、X=1300 Y=(X-800)*5%七、布置作业:习题28 1、2四、教学反思本节课通过“理解问题分析问题中的变量和常量以及它们之间的关系用数学的方式表示它们之间的关系做数学求解检验结果的合理性并给出问题的解答”的教学流程,使学生不仅获得了书本上的知识,而且拓展知识应用,渗透数学思想方法,体现应用与创新意识.新课程给数学带来的变化是更注重学习的过程(包括思维的过程和感受的过程),更强调对数学的体验,以及数学学习的多样化等等,其实也就是更注重学生的数学综合能力的培养.在课堂教学过程中,注重以学生的自主探究为主,从提出问题到解决问题,说明知识来源于生活,而又服务于生活,体现了理论联系实际的教学原则.从集体讨论个别发言总结归纳,符合学生的年龄特征.通过本节学习,学生不但从实际问题中理解数学知识,体会数学的乐趣,而且从能力上、思想上都达到一个新的境界.通过本节课的教学看到学生在计算上还存在很大问题,在这方面要注意培养学生的准确计算能力,同时还看到学生的潜力很大,作为教师要充分发挥学生的主观能动性,为学生的发展提供足够的时间和空间.

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 教育教学 > 成人教育


备案号:宁ICP备20000045号-2

经营许可证:宁B2-20210002

宁公网安备 64010402000987号