《第7章景物恢复多图象.ppt》由会员分享,可在线阅读,更多相关《第7章景物恢复多图象.ppt(40页珍藏版)》请在三一办公上搜索。
1、章毓晋(TH-EE-IE),第7章景物恢复:多图象,7.1单目景物恢复7.2光度立体学 7.3从运动求取结构,章毓晋(TH-EE-IE),立体视觉:优点:几何关系非常明确缺点:需要确定双目图象中的对应点 单目图象(可单幅或多幅图象)恢复景物“从 X 得到形状”(shape from X)这里 X 可以代表阴影、轮廓、纹理、运动基于多幅图象:不同光照,光流,7.1单目景物恢复,章毓晋(TH-EE-IE),7.2.1景物亮度和图象亮度 7.2.2表面反射特性和亮度 7.2.3目标表面朝向 7.2.4反射图和 亮度约束方程7.2.5光度立体学求解,7.2光度立体学,章毓晋(TH-EE-IE),一个点
2、光源的辐射亮度(景物亮度)和图象上对应点的照度(图象亮度)之间的关系,7.2.1景物亮度和图象亮度,章毓晋(TH-EE-IE),由两个立体角的相等可得(P.151152):图象照度E是与所感兴趣的景物亮度L成正比的,并且与镜头的面积成正比,与镜头焦距成反比,7.2.1景物亮度和图象亮度,章毓晋(TH-EE-IE),景物的亮度L不仅取决于入射到景物表面的光通量和入射光被反射的比例,还与光反射的几何因素有关,即与光照方向和视线方向有关:,7.2.1景物亮度和图象亮度,表面面元的法线,一条光线,极角,方位角,参考线,章毓晋(TH-EE-IE),双向反射分布函数BRDF:f(qi,fi;qe,fe)照
3、度和亮度的比值双向反射分布函数关于入射和反射方向是对称的,7.2.1景物亮度和图象亮度,章毓晋(TH-EE-IE),两种极端的情况:理想散射表面:朗伯(Lambertian)表面或漫反射表面,从所有观察方向看它都是同样亮的(与观察线和表面法线的夹角无关),并且它完全不吸收地反射所有入射光,7.2.2表面反射特性和亮度,章毓晋(TH-EE-IE),理想散射表面被具有照度E的点源照明时的亮度 散射面反射的朗伯定律一个理想散射表面受到均匀照度E,7.2.2表面反射特性和亮度,章毓晋(TH-EE-IE),理想镜面反射表面:反射光的波长仅取决于光源而与反射面的颜色无关 将所有从(qi,fi)方向射入的光
4、全部反射到(qe,fe)方向上,7.2.2表面反射特性和亮度,章毓晋(TH-EE-IE),用切面的朝向来表示表面在该点的朝向 切面的朝向可用表面的法线矢量来指示目标表面可用与镜头平面(与象平面平行)正交的距离z来描述,7.2.3目标表面朝向,章毓晋(TH-EE-IE),用偏微分参数化表面朝向平行于矢量rx=1 0 pT的线过切面的(x,y)处平行于矢量ry=0 1 qT的线过切面的(x,y)处,7.2.3目标表面朝向,章毓晋(TH-EE-IE),目标表面法线和镜头方向间的夹角qe 目标相当接近光轴,则从目标到镜头的单位观察矢量可认为是0 0 1T 如果目标表面的法线可用ps qs 1T表示 光
5、源光线的方向可用梯度(ps,qs)来指示,7.2.3目标表面朝向,章毓晋(TH-EE-IE),点光源照射一个朗伯表面 将R(p,q)作为梯度(p,q)的函数以等值线形式画出而得到的图称为反射图,7.2.4反射图和亮度约束方程,章毓晋(TH-EE-IE),朗伯表面反射图示例ps=0,qs=0,ps 0,qs=0,ps 0,qs 0嵌套的同心圆 椭圆或双曲线 双曲线,7.2.4反射图和亮度约束方程,章毓晋(TH-EE-IE),各向同性辐射表面等值线现在是平行直线,7.2.4反射图和亮度约束方程,章毓晋(TH-EE-IE),亮度约束方程在图象中(x,y)处象素的灰度I(x,y)取决于该象素由(p,q
6、)所表达的反射特性R(p,q)照度E(x,y)正比于灰度I(x,y),7.2.4反射图和亮度约束方程,章毓晋(TH-EE-IE),朗伯表面的球体,7.2.4反射图和亮度约束方程,章毓晋(TH-EE-IE),恢复出原来成象物体的形状 从由p和q所确定的表面朝向到由反射图R(p,q)所确定的亮度间的对应关系是唯一的,但反过来却不一定。实际中常有无穷多个表面朝向可给出相同的亮度,在反射图上这些对应相同亮度的朝向是由等值线连起来的 对一个朗伯表面来说,只有当(p,q)=(ps,qs)时才有R(p,q)=1,所以给定表面亮度就可唯一地确定表面朝向,7.2.5光度立体学求解,章毓晋(TH-EE-IE),一
7、般情况:在每个空间位置亮度只有一个自由度(亮度值),而朝向有两个自由度(梯度值)从图象亮度到表面朝向的对应并不是唯一的采集两幅图象(不同光线),7.2.5光度立体学求解,章毓晋(TH-EE-IE),方程线性独立,那么对p和q有唯一的解 只要p1/q1 p2/q2,7.2.5光度立体学求解,章毓晋(TH-EE-IE),7.3.1光流和运动场 7.3.2光流方程求解 7.3.3光流与表面取向,7.3从运动求取结构,章毓晋(TH-EE-IE),运动可用运动场描述,运动场由图象中每个点的运动(速度)矢量构成,7.3.1光流和运动场,章毓晋(TH-EE-IE),光流:亮度模式的运动 光流有三个要素:(1
8、)运动(速度场),这是光流形成的必要条件(2)带光学特性的部位(如有灰度的象素点),它能携带信息(3)是成象投影(从场景到图象平面),因而能被观察到,7.3.1光流和运动场,章毓晋(TH-EE-IE),表观运动?(图象灰度不随时间变化)在时刻 t 有一个图象点P具有亮度E。在t+dt时,P对应哪个图象点P 呢?仅靠变化图象中的局部信息并不能唯一地确定光流,7.3.1光流和运动场,章毓晋(TH-EE-IE),光流方程(推导见中册)其中fx,fy和ft分别表示图象中象素灰度沿X,Y,T方向的梯度如果一个固定的观察者观察一幅活动的场景,那么所得图象上某一点灰度的(一阶)时间变化率是场景亮度变化率与该
9、点运动速度的乘积,7.3.2光流方程求解,章毓晋(TH-EE-IE),光流计算:刚体运动,该直线上各点均为光流方程的解,仅一个光流方程并不足以唯一地确定u和v两个量,7.3.2光流方程求解,章毓晋(TH-EE-IE),光流计算:刚体运动 将所研究目标看作无变形刚体 光流速度的空间变化率为零,7.3.2光流方程求解,章毓晋(TH-EE-IE),光流计算实例,7.3.2光流方程求解,章毓晋(TH-EE-IE),光流计算:平滑运动 在图象的大部分地方运动场变化一般比较缓慢稳定 最小化一个与平滑相偏离的测度,7.3.2光流方程求解,es+lec,章毓晋(TH-EE-IE),光流计算:灰度突变从路径看灰
10、度变化 从时间看灰度变化,7.3.2光流方程求解,章毓晋(TH-EE-IE),光流计算:基于高阶梯度 考虑图象本身在灰度上的连续性(即考虑图象灰度的高阶梯度),7.3.2光流方程求解,章毓晋(TH-EE-IE),光流计算:基于高阶梯度将上5式代入光流约束方程,7.3.2光流方程求解,章毓晋(TH-EE-IE),光流计算:基于高阶梯度,各项独立,7.3.2光流方程求解,章毓晋(TH-EE-IE),光流包含了场景结构的信息,7.3.3光流与表面取向,章毓晋(TH-EE-IE),任意运动点的光流(d,e)=(df/dt,dq/dt)为该点在图象球坐标系中沿f 和q方向的角速度 观察者以速度S沿Z轴(正向)运动,7.3.3光流与表面取向,章毓晋(TH-EE-IE),r/r=tanDq Dq,r/Dr=tans 确定s 和t,7.3.3光流与表面取向,章毓晋(TH-EE-IE),7.3.3光流与表面取向,章毓晋(TH-EE-IE),通信地址:北京清华大学电子工程系 邮政编码:100084 办公地址:清华大学东主楼,9区307室 办公电话:(010)62781430 传真号码:(010)62770317 电子邮件:个人主页:实验室网:,联 系 信 息,