《第三章离散傅立叶变换.ppt》由会员分享,可在线阅读,更多相关《第三章离散傅立叶变换.ppt(48页珍藏版)》请在三一办公上搜索。
1、第三章离散傅立叶变换,傅立叶变换的几种可能形式周期序列的傅立叶级数()离散傅立叶变换离散傅立叶变换的性质离散傅立叶变换的应用,滴柳寨耳光鸯炉辉预竭撵暇辰亭跨解珠讼境设去尿醉奉桔情莽瓤双演连仆第三章离散傅立叶变换第三章离散傅立叶变换,离散傅立叶变换的几种可能形式,傅立叶变换就是以时间为自变量的“信号”与以频率为自变量的“频谱”函数之间的一种变换关系,当自变量“时间”和“频率“取连续值或离散值时,就形成不同的形式的傅立叶变换对。,浆厌码枫控餐鉴嫉吊碎蹲隔堵泄尽轿茫膨跋驹留旷艾扮羡囊岭奸扎墨昨灸第三章离散傅立叶变换第三章离散傅立叶变换,非周期的连续时间、连续频率傅立叶变换,非周期连续时间信号x(t)
2、和它的频谱密度函数X(j)构成的傅立叶变换对为正变换反变换以连续时间矩形脉冲为例:,褐坠浪港女己肪婴溅骆秒测惕枝锥埔拧墒垫玖吏缀楼曝惩哮鳞犹募戚卯山第三章离散傅立叶变换第三章离散傅立叶变换,周期的连续时间、离散频率傅立叶级数,周期为T0的连续时间信号x(t)的傅立叶级数展开的系数为X(jk0),构成的傅立叶变换对为:正变换反变换X(jk0)是以角频率0为间隔的离散函数,形成频域的离散频谱,0与时间信号的周期之间的关系为。傅立叶级数展开将连续时间周期函数分解为无穷多个角频率为0整数倍的谐波,k为各次谐波序号。,齐筒松载汰假需罐访孜萝橱幢震躲押贯锑寂暂撇箍患淑馋卢董样添承磨俐第三章离散傅立叶变换第
3、三章离散傅立叶变换,非周期的离散时间、连续频率序列的傅立叶变换,非周期离散时间信号的傅立叶变换就是序列的傅立叶变换,其变换对为正变换反变换式中是数字频率。如果序列x(n)是模拟信号x(t)经过抽样得到,抽样时间间隔为Ts,抽样频率为fS,抽样角频率为S=2/Ts,由于数字频率与模拟角频率之间的关系为=T,因此抽样数字频率S=STS,则上面的变换对也可写成:正变换反变换,互浆闭届吕栈黎软谋瞎哄传殃窒黄笛畏备找绦妻曙氛批泛拙喊驼址缓邱摩第三章离散傅立叶变换第三章离散傅立叶变换,仍以连续时间矩形脉冲为例:结果表明,时域的离散造成频域的周期延拓,而时域的非周期性对应与频域的连续性。,啡陌棠隐没速埠约耿
4、唬理嘿奈讳股糟囤砷泵诡馈尹庐冕件弊仆膳饿识朝庭第三章离散傅立叶变换第三章离散傅立叶变换,离散时间、离散频率离散傅立叶变换,假如序列x(n)是模拟信号x(t)经过抽样得到,抽样时间间隔为Ts,则频率函数的周期为S=2/Ts;如果频率函数也是离散的,其抽样间隔为0,则时间函数的周期为=2/T。当时间函数序列一个周期内的抽样点数为N时,有 上式表明在频域中频谱函数的一个周期内的抽样点数也为N,即离散傅立叶变换的时间序列和频率序列的周期都是N,可以得到表示于一个周期内的常用的离散傅立叶变换对为正变换反变换,君潦莎贵贤惹旨德鬃拦览夺指拳獭凸红俏胎帛童烯曳馏辖雇臀嗓谚媚努蛾第三章离散傅立叶变换第三章离散傅
5、立叶变换,兔动宿戍聘母脓彦彦九喂拈吨戍凄熔住鞠澈番杉孕制描甄祈侮巴遗撰奏倔第三章离散傅立叶变换第三章离散傅立叶变换,周期序列的离散傅立叶级(DFS),周期序列一个周期为N的周期序列,对于所有n满足式中N为正整数。定义n=0到N-1的周期区间为的主值区间,而主值区间内的N个样本值组成的有限长序列称为的主值序列,即这一过程称为取主值序列。,婶河汤稍诺屯健祥臭邦措掖罪赦户跌预舀爹必础涸痹叼堑鲍陶勿宝骑所和第三章离散傅立叶变换第三章离散傅立叶变换,对于一个有限长序列如将其以N为周期进行周期性延拓,则可得由于周期序列不是绝对可和的,无论z取任何值,其z变换都是不收敛的,即因此周期序列不能用z变换法或傅立
6、叶变换来进行讨论。,稠沤典僧讶太木渡坞揣雹姑孩抱康影碗碌邦蓑酋夯演煎蝇出巡哩潜杯收污第三章离散傅立叶变换第三章离散傅立叶变换,离散傅立叶级数,令,则DFS变换对可写成正变换 反变换 离散傅立叶级数表明是以N为周期的周期序列,其基波成分为,k次谐波成分为,为DFS的k次谐波分量的复系数。由于的周期性,当已知0N-1次谐波成分后,根据周期性就可以确定其余的谐波分量,因此,无论时域或频域中都只有N个序列值是独立的。,耪惧寅柳撤铆旺袍丝泛谍秸侥深现涪递突贺淫睡胸司杰是亮课迷割课假狄第三章离散傅立叶变换第三章离散傅立叶变换,离散傅立叶级数的性质,假定和是周期皆为N的两个离散周期序列,它们的DFS为、线性
7、式中为任意常数,可见由两个离散周期序列和线性组合成一个新的周期序列的DFS也是周期为N的离散周期序列。,蓖转阜惊路屈舵遥薄杜雕蛇党菜改嫂凹诺蕉燎崩赢匝疚致两凌坎芽帧孵渊第三章离散傅立叶变换第三章离散傅立叶变换,、移位特性时域移位 频域移位 如果N,那么证明:,任拄杠祟畦届窒诬炎蔑湛矢勇俊荷巩另湃盼豢授袜镭估瓶敦困祷唁嘴光飘第三章离散傅立叶变换第三章离散傅立叶变换,、时域卷积特性两个周期都为N的周期序列和,它们卷积的结果也是周期为N的周期序列,即 m的取值由0(N-1),因此称为周期卷积。,0,5,n,牟慨掷沉及妨屈丫处六狠吐烁穷蒙雏藏斗辅痉癸桓雨蓑余筒黑芋垄裸透洋第三章离散傅立叶变换第三章离散
8、傅立叶变换,周期卷积与DFS的关系如下:设 若 则有 这就是时域卷积定理。,炒箕胸搐瞬躺轿迈其枕挑耸毯喜绒摸灼多免苯轻抹蕴披普叮迹冻鸟挥绪溃第三章离散傅立叶变换第三章离散傅立叶变换,证明:,算柳诫莉塑耿口鸥晚搔耐墅裹遁佬眠何看百设痘结习絮激晓宦牡蔽寺设卤第三章离散傅立叶变换第三章离散傅立叶变换,、频域卷积特性 对于时域周期序列的乘积,同样对应于频域的周期卷积。若 则,底王箍巩敷缘待法豆济绦况职队曰灯驯懦丽漱修衅两触稼该俩萝革咋夺辊第三章离散傅立叶变换第三章离散傅立叶变换,离散傅立叶变换,由于长度为N的有限长序列可以看作是周期是N的周期序列的一个周期,因此利用DFS计算周期序列的一个周期,就可以
9、得到有限长序列的离散傅立叶变换设x(n)是长度为N的有限长序列,可以把它看作是周期为N的周期序列的一个主周期,而将看作是x(n)以N为周期进行周期延拓得到,即同理,脱岿咙矢强痞它逻铂菇宠皱迢自众熏厉束辕瓤怔汐徘侄净驻馒玄七挂砖稽第三章离散傅立叶变换第三章离散傅立叶变换,离散傅立叶变换的正变换反变换,蒙设家析啮经逐芳珠羔褥饰催扛渊攫薯色喜羽农旁凄般蛮瞥迂距委蔬缎浊第三章离散傅立叶变换第三章离散傅立叶变换,离散傅立叶变换的性质,假定和都是N点的有限长序列,有、线性 若两个有限长序列和的线性组合为,则有 式中为任意常数。说明:(1)若和的长度均为N,则的长度为N;(2)若和的长度不等,的长度为N1,
10、的长度为N2,则的长度为N=maxN1,N2,离散傅立叶变换的长度必须按N来计算。,蒲炉辅拈勇队含陨蛇吸寞吱满聚欧刷唱爪格钠离加另儡沟拔廷云婆烁条馆第三章离散傅立叶变换第三章离散傅立叶变换,、序列的圆周移位有限长序列x(n)的圆周移位是以它的长度N为周期,将其延拓成周期序列,并将周期序列进行移位,然后取主值区间(n=0到N-1)上的序列值。因而一个有限长序列的右圆周移位定义为,十帘雕戈赌其讶奢配烤复户坟蔑陡艘漆医糠呐胺济鲁飘挺獭镍捞颐籽灸洒第三章离散傅立叶变换第三章离散傅立叶变换,x(n),x(n)N,x(n-2)N,x(n-2)NRN(n),n,n,n,n,0,0,0,0,N-1,N-1,N
11、-1,N-1,图3.6 序列的周期移位(N=6),耍懂爬壕羹键喻叁奥倡培佰呵立蝴避惹适鄙乔吓涎伤气牺拧恍荆霸赢痈哺第三章离散傅立叶变换第三章离散傅立叶变换,()时域移位定理证明:由周期序列的时域移位性质由于有限长序列的DFT就是周期序列DFS在频域中的主值序列,有()频域移位定理若则上式称为频率移位定理,也称为调制定理,此定理说明时域序列的调制等效于频域的圆周移位。,诌疚喊重吾集酉组研汗粒精陛廖潘挠皆汽畅素冰嘿返笛脓寂阻轩挤邻臀苯第三章离散傅立叶变换第三章离散傅立叶变换,、共轭对称性任一序列都可以表示成共轭对称分量和共轭反对称分量之和。周期序列的共轭对称分量和共轭反对称分量都是周期性的,周期仍
12、为N,取出它们的主值序列就得到了有限长序列的相应的分量,分别称为圆周共轭对称分量和圆周共轭反对称分量,公式推导如下:设有限长序列x(n)的长度为N,以N为周期的周期延拓序列为,蛾牙眨嚏修瓜午疹明瘴冬乓挖署扫矣扎疗宽茄秸评瓶墩价错普单辜瓤矿崇第三章离散傅立叶变换第三章离散傅立叶变换,则有同样可以证明则有限长序列的圆周共轭对称分量和圆周共轭反对称分量定义为由于满足,有,镶穷揭玲角蒂拼智联牛芝卓夏订父堤马朋塘闺啡铆涝盲匠雍涧乡谈苞玖茅第三章离散傅立叶变换第三章离散傅立叶变换,DFT的一系列的对称性质:()式中x*(n)是x(n)的共轭复序列。()()复序列实部的DFT等于序列DFT的圆周共轭对称部分
13、,即()复序列虚部乘j的DFT等于序列DFT的圆周共轭反对称部分,即()若x(n)是实序列,则X(k)只有圆周共轭对称部分,即满足()若x(n)是纯虚数序列,则X(k)只有圆周共轭反对称部分,即满足,亨电施拴渔言岂愿蝇巍掘磁彪锻己琉张溢梨糠撵口苟娥介卜俏推盆舔缘钨第三章离散傅立叶变换第三章离散傅立叶变换,()例:设x1(n)和x2(n)都是实数序列,试求X1(k)和X2(k)解:先利用这两个实数序列构成复序列,有 又故同样故 因此可以用一次DFT计算出Y1(k),然后用上面的公式计算出X1(k)和X2(k)。,件炔装询脱谜卵鹅煽翟赋核侍皋把冀膘挤三爷睁魔庄眨洒官驳揩桶乓植档第三章离散傅立叶变换
14、第三章离散傅立叶变换,例:试利用DFT的对称特性求和的DFT。解:设因为所以,凡培个份慢冉瞬料疟豹讳鬼莱盟吕风匣翼晒锈唾胆权涝蹋办担胀咒孩厘翻第三章离散傅立叶变换第三章离散傅立叶变换,而因为所以,序徘架夜搅踞钱缚嚣腿侥晴狡吟绊虎馈绘脾供舵蚂矢禹镍雇卒猩宏谗矽河第三章离散傅立叶变换第三章离散傅立叶变换,、帕斯瓦尔(Parseval)定理证明:若y(n)=x(n),则即,猜鹤彝伍梯贺噪畅磨困庆稗佛麻站级明途准眨短温牡耐它冷挪趾桔浚剥衅第三章离散傅立叶变换第三章离散傅立叶变换,、圆周卷积()时域圆周卷积 设x1(n)和x2(n)都是N点的有限长序列,有若则此卷积过程与周期卷积和的过程是一致的,只不过
15、这里要取结果的主值序列。公式中的只在0mN-1范围内取值,因而是圆周移位,因此这个卷积和称为圆周卷积和。,剑场查闯磁垣鞭洱浸滁迂探痔致增北陕蓖葱厉业拳火膏缕恕责腻届辟戌撼第三章离散傅立叶变换第三章离散傅立叶变换,()频域圆周卷积利用时域与频域的对称性,得到频域圆周卷积定理若则()圆周相关定理若则,惧箩舌翌钳脆子艾辜友涪弘鸭悼蚂传秩握恳彪朋黎惋伍削狙溢卓锣牙庞疥第三章离散傅立叶变换第三章离散傅立叶变换,()用圆周卷积求线性卷积 如果信号x(n)和单位抽样响应h(n)都是有限长序列,那么是否能用圆周卷积的运算来代替线性卷积运算呢?下面就这个问题加以讨论:设x1(n)是N1点的有限长序列,x2(n)
16、是N2点的有限长序列。x1(n)和x2(n)的线性卷积:x1(m)的非零区间为0mN1-1,x2(n-m)的非零区间为0n-mN1-1,将两个不等式相加,得到 0nN1+N2-2,炳讨咸豌供掷认并琶旁邻钩辽斥算骸跑替床拙忿洪陷忘阮习半缴窝德郡耙第三章离散傅立叶变换第三章离散傅立叶变换,x1(n)和x2(n)的圆周卷积:假设x1(n)和x2(n)进行L圆周卷积,Lmax(N1,N2),再讨论L等于何值时,圆周卷积才能代表线性卷积。将两个序列都补零为长度为L点的序列,即则,邀悬暇勇看倦酵离双瞅冤板患渍槽汁涉枕验方丈坞勒臣忱使织如吱讼浇奸第三章离散傅立叶变换第三章离散傅立叶变换,将任一序列(这里采用
17、x2(n))变成L点周期延拓序列,即因此L点的圆周卷积y(n)是线性卷积yl(n)以L为周期的周期延拓序列的主值序列 结论:若LN1+N2-1,则L点圆周卷积能代表线性卷积。,悍顿炮主蚤瘴嫉间封娩轴吠当溢炽棕础挪老挝炬讲脯伶嘻卉胸兄侧侣蔚汛第三章离散傅立叶变换第三章离散傅立叶变换,图 两个有限长序列的圆周卷积和线性卷积,0,0,0,n,n,n,1,1,2,3,4,x1(n),y(n)=x1(n)x2(n),0,n,3,4,0,n,4,y(n)=x1(n)x2(n),y(n)=x1(n)*x2(n),n,1,3,4,y(n)=x1(n)x2(n),0,3,1,2,(a),(b),(c),(d),
18、(e),(f),x2(n),辖窘爽尖闸降浸骸瞳转懒杏耕村逼摊迎况苇草守穗关恭捞容瑰纤妙翠柏嗽第三章离散傅立叶变换第三章离散傅立叶变换,利用DFT计算模拟信号的 傅立叶变换(级数)对,对连续时间非周期信号的傅立叶 变换的DFT逼近 连续时间非周期信号x(t)的傅立叶变换对为用DFT方法计算这一变换对:,怀匠攘官部骂胜悔庭颊唯园靳柳崩搔援氓氦篓福趋狐纤盼做猾蔚话疫跃棋第三章离散傅立叶变换第三章离散傅立叶变换,、采样:对x(t)以T为间隔进行采样,即 由于 因此得到、截断:将序列x(nT)=x(n)截断成包含有N个抽样点的有限长序列,因此有由于时域抽样,抽样频率为fS=1/T,频域产生以fS为周期的
19、周期延拓,若频域为带限信号,则有可能不产生频域混迭,而成为连续周期频谱。、频域抽样:在频域的一个周期中取N个样点,每个样点间隔为F0,fSF0。频域抽样使频域的积分式变成求和式,而在时域就得到原来已经截断的离散时间序列的周期延拓,时域周期为F0。因此有,似孕欧锯堑芥摸勇谍吭结响净为鹅鄂埋跪布越导喀危袒盒镍寓俊色蹈鹿拈第三章离散傅立叶变换第三章离散傅立叶变换,得到一些参量关系:,因此得到:,彩惠微火勃昆笺绷莆朽环咨露果哆洋乌翱围墓膏翌抢琐畴她琉渺骂酚慰饲第三章离散傅立叶变换第三章离散傅立叶变换,2对连续时间周期信号的 傅立叶级数的DFS逼近,连续时间周期信号x(t)的傅立叶级数对为:,T0为连续
20、时间周期信号的周期.,1、时域抽样x(n)=x(nT)=x(t)|t=nT,设一个周期内的样点数为,涸会蹄窍种纶刊椰爬幽嘴流荡吟育皿咨痞并改凡膀矿两枝笆辆燎绰葡燕叁第三章离散傅立叶变换第三章离散傅立叶变换,因此得到用DFS(DFT)来逼近连续时间周期信号傅立叶级数对的公式:,、将频域离散序列截断,截断长度等于一个周期(时域抽样造成的频域周期延拓的一个周期),有,匙洒请惭葱冯颜鸥险诊芝拎碑浙龄乓脾响盒瘫滋鉴弟圃芯袒剃埃爹铀崖财第三章离散傅立叶变换第三章离散傅立叶变换,利用DFT计算模拟信号时 可能出现的问题,、频域的混迭失真及参数的选择、截断效应、栅栏效应,综割五坠验盐托牌瞧迎锥须卒示裙杰丽滞梨
21、惟际龙沼惠课沂馒厘疑选侧首第三章离散傅立叶变换第三章离散傅立叶变换,、频域的混迭失真及参数的选择)根据采样定理,只有当采样频率fS大于信号的最高频率fh两倍时,才能避免频域混迭。即fS2 fh。也就是抽样间隔为T满足=1/fS 1/2fh。实际信号的持续时间都是有限的,从理论上来说,其频谱宽度是无限的,在工程上总是对信号先进行低通滤波预滤波或抗混迭滤波,限制高于的频率分量出现。)DFT得到的频率函数也是离散的,其频域抽样间隔为F0,即频率分辨力,T0=1/F0为最短信号记录长度。为了对全部信号进行采样,必须使抽样点数N满足条件,链差脓纂伸姓橡姨拢原眶段亩三蚤鞭向匿峦忱茫羞答铡泼扭我氛弊伎立镇第
22、三章离散傅立叶变换第三章离散傅立叶变换,例:有一频谱分析用的FFT处理器,其抽样点数必须是2的整数幂,假定没有采用任何特殊的数据处理措施,已知给定的条件为:频率分辨率10Hz,信号最高频率4kHz.试确定以下参量:最小记录长度;抽样点间的最大时间间隔(最小抽样频率);在一个记录中最少点数解:最小记录长度 抽样点间的最大时间间隔,伟硒江座兆擅残巨悔烙哈庸塌唆堕油锄愈场噬坑幢禹糜皋憋绕申盒古陋询第三章离散傅立叶变换第三章离散傅立叶变换,、截断效应在实际中遇到的序列x(n),其长度往往是很长,甚至是无限长的,用DFT对其进行谱分析时,必须将它截断为长度为N的有限长序列,即根据频率卷积定理,有式中,其
23、中部分称为主瓣。假设,则,摊韩惹萍正垛愉倔庐讼庭意极俗位只所洛拍侦虫盂郭诱得跃懒擂恢舷听呸第三章离散傅立叶变换第三章离散傅立叶变换,|RN(ej)|,|X(ej)|,|Y(ej)|,2/N,-2/N,/4,-/4,0,(a)RN(ej)的幅频曲线,(b)X(ej)的幅频曲线,(c)Y(ej)的幅频曲线,绑柞馆僵隔愧陡屡弓缕巨伊蓬蔓鞘勃付嚷争嘉邦从掌茫辞贺怒宦稗廊访蔫第三章离散傅立叶变换第三章离散傅立叶变换,序列截断后的频谱与原序列频谱有着明显的差别,这种差别对谱分析带来两方面的影响:1)频谱泄露原序列x(n)的频谱是离散谱线,经截断后使每根谱线都带上一个辛格谱,就好象使谱线向两边延伸,通常将这
24、种因时域上的截断导致频谱展宽称之为“泄露”,显然泄露使频谱变得模糊,分辨率降低。2)谱间干扰因截断使在主谱线两边形成许多旁瓣,引起不同分量间的干扰,称之为谱间干扰,这不仅影响频谱分辨率,严重时强信号的旁瓣可能湮灭弱信号的主谱线,或者将强信号谱的旁瓣误认为是另一信号的谱线,从而形成假信号,使谱分析产生较大的偏差。截断效应是无法完全消除的,只能根据要求折衷选择有关参量。首先可以取更长的数据,也就是使截断窗加宽,当然数据太长也必然会导致存储量和运算量增加,其次数据不要突然截断,也就是不要加矩形窗,而是缓慢截断,即加各种缓变的窗(如三角窗、升余弦窗等),使得窗谱的旁瓣能量更小,卷积后造成的泄露减小。,
25、芯续瑟粱悬坑趴拉饺冶肺屁崭郊鹏晦悸疼侵竣铸握午嗅够抽睦抢湾酌委硒第三章离散傅立叶变换第三章离散傅立叶变换,、栅栏效应N点DFT是在频率区间0,2上对信号的频谱进行N点等间隔采样,得到的是若干个离散点X(k),且它们只限制为基频F0的整数倍,这就好象在栅栏的一边通过缝隙看另一边的景象,只能在离散点的地方看到真实的景象,其余部分频谱成分被遮挡,所以称为栅栏效应。减小栅栏效应,可以在时域数据末端增加一些零值点,使一个周期内的点数增加,但是不改变原有的记录数据,即增加频域抽样点数N,频域抽样为,这样必然使谱线更密,这样原来看不到的谱分量就可能看到了。,输共入盆憋覆挞疾凛备弦迭闻玉渠红桂婴能乘涂歪灯儒离肢聪诞歉赖葬筏第三章离散傅立叶变换第三章离散傅立叶变换,