《【天津卷】2019年普通高等学校招生全国统一考试数学(理)真题(含答案).doc》由会员分享,可在线阅读,更多相关《【天津卷】2019年普通高等学校招生全国统一考试数学(理)真题(含答案).doc(11页珍藏版)》请在三一办公上搜索。
1、名师考前提醒01选择题做完就填答题卡这是针对考试总会忘记填答题卡的考生,为避免非智力因素失分,一般每门一做完选择题就填答题卡。这时填答题卡心态较平静,不会因为担心时间不够而出现涂写错位的情况。考试成绩的好坏往往与考试的心情有关,所以我们一定要调节好自己的考试心情。特别是刚开始的状态,利用一些小的技巧如做完试题就填涂答题卡等,这样可以避免在最后时间较紧的情况下因匆忙而涂错、涂串或是没有涂完而造成遗憾。02考前看相关资料转换思维考英语前最好看看复习资料,并不是要记住什么知识点,而是让大脑提前进入状态。而数学试卷对一些学生来说比较发怵,建议在心中回忆梳理一下相关知识点,可驱使自己进入状态,效果不错。
2、考试紧张,这是很正常的事情,考试不紧张,就不正常了。但是不能过度紧张,那样会给自己很大的压力不利于水平的发挥。可以和同学聊一聊天,说说话放松一下。03遇事都往好处想看大题时,先不想该怎么做,只是看它如何表述,甚至跟自己说“这题我会做,第一问认真看就能做对”,让自己有一个平和的心态答题。即使是弱科,我们也要知足常乐,我只要把会做的都做上,在一场考试中把会的都做对其实就是很好的发挥了。时刻给自己打一打气,阿Q一下,这样把对自己的期待放低一些,心态就平稳了,也就高兴了,这可以使得思路更顺畅,而超水平发挥也就很正常了。04别看他人答题的速度考场上不要左顾右盼,观察别人做题的进度,万一人家比自己快,会给
3、自己压力。在考场上和比较熟悉的老师、同学可以主动打个招呼。即使是不认识的老师,也可问候一声“老师好”,一般老师都会像老朋友似地回以微笑,这可以缓解紧张的情绪。这一些方法和措施都是很有助于调节考试心态与考试情绪的。有心理学家研究证明,人在平稳的平稳或是心情高兴的时候,智商最高,情商也不错,更容易发挥出自己的高水平来。05答题遇困难要镇静,巧用考前5分钟这个问题是涉及到考试策略与方法的,对于每一学科的考试,我们都应该有自己的考试策略和答题风格。即考试时间的规划,答题的原则,遇到问题时的心理准备与应对方法、如何调节自己的在答题方案等等。计划不如变化快,我们的计划要随着试题的难易程度随时调整,目的是在
4、有限的时间里有质有量的完成每一道试题。要随机而动,在发卷后的5分钟里,要先浏览一下第二卷的试卷结构和试题的分布、难易程度等等,初步制定出本试卷的答题计划和答题顺序。先易后难,先熟后生,这就要充分利用这5分钟,做很好的规划。只有这样才不至于把难度较大的先做而浪费了时间和精力。2019年普通高等学校招生全国统一考试(天津卷)数学(理工类)本试卷分为第卷(选择题)和第卷(非选择题)两部分,共150分,考试用时120分钟。第卷1至2页,第卷3-5页。答卷前,考生务必将自己的姓名、准考号填写在答题卡上,并在规定位置粘贴考试用条形码。答卷时,考生务必将答案涂写在答题卡上,答在试卷上的无效。考试结束后,将本
5、试卷和答题卡一并交回。祝各位考生考试顺利!第卷注意事项:1.每小题选出答案后,用铅笔将答题卡上对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其他答案标号。2.本卷共8小题,每小题5分,共40分。参考公式:如果事件、互斥,那么.如果事件、相互独立,那么.圆柱的体积公式,其中表示圆柱的底面面积,表示圆柱的高.棱锥的体积公式,其中表示棱锥的底面面积,表示棱锥的高.一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合,则A. B. C. D.2.设变量满足约束条件则目标函数的最大值为A.2 B.3 C.5 D.63.设,则“”是“”的A.充分而不必要条件B.必要而不充分
6、条件C.充要条件D.既不充分也不必要条件4.阅读右边的程序框图,运行相应的程序,输出的值为A.5 B.8C.24 D.295.已知抛物线的焦点为,准线为,若与双曲线的两条渐近线分别交于点和点,且(为原点),则双曲线的离心率为 A. B. C. D.6.已知,则的大小关系为A. B. C. D.7.已知函数是奇函数,将的图像上所有点的横坐标伸长到原来的2倍(纵坐标不变),所得图像对应的函数为.若的最小正周期为,且,则A. B. C. D.8.已知,设函数若关于的不等式在上恒成立,则的取值范围为A. B. C. D.第卷注意事项:1用黑色墨水的钢笔或签字笔将答案写在答题卡上。2.本卷共12小题,共
7、110分。二.填空题:本大题共6小题,每小题5分,共30分.9.是虚数单位,则的值为 .10.是展开式中的常数项为 .11.已知四棱锥的底面是边长为的正方形,侧棱长均为.若圆柱的一个底面的圆周经过四棱锥四条侧棱的中点,另一个底面的圆心为四棱锥底面的中心,则该圆柱的体积为 .12.设,直线和圆(为参数)相切,则的值为 .13.设,则的最小值为 .14.在四边形中,点在线段的延长线上,且,则 .三.解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤.15.(本小题满分13分)在中,内角所对的边分别为.已知,.()求的值;()求的值.16.(本小题满分13分)设甲、乙两位同学上
8、学期间,每天7:30之前到校的概率均为.假定甲、乙两位同学到校情况互不影响,且任一同学每天到校情况相互独立.()用表示甲同学上学期间的三天中7:30之前到校的天数,求随机变量的分布列和数学期望;()设为事件“上学期间的三天中,甲同学在7:30之前到校的天数比乙同学在7:30之前到校的天数恰好多2”,求事件发生的概率.17.(本小题满分13分)如图,平面,.()求证:平面;()求直线与平面所成角的正弦值;()若二面角的余弦值为,求线段的长.18.(本小题满分13分)设椭圆的左焦点为,上顶点为.已知椭圆的短轴长为4,离心率为.()求椭圆的方程;()设点在椭圆上,且异于椭圆的上、下顶点,点为直线与轴
9、的交点,点在轴的负半轴上.若(为原点),且,求直线的斜率.19.(本小题满分14分)设是等差数列,是等比数列.已知.()求和的通项公式;()设数列满足其中.(i)求数列的通项公式;(ii)求.20.(本小题满分14分)设函数为的导函数.()求的单调区间;()当时,证明;()设为函数在区间内的零点,其中,证明.2019年普通高等学校招生全国统一考试(天津卷)数学(理工类)参考解答一.选择题:本题考查基本知识和基本运算.每小题5分,满分40分.1.D 2.C 3.B 4.B 5.D 6.A 7.A 8.C二.填空题:本题考查基本知识和基本运算.每小题5分,满分30分.9. 10. 11. 12.
10、13. 14.三.解答题15.本小题主要考查同角三角函数的基本关系,两角和正弦公式,二倍角的正弦与余弦公式,以及正弦定理、余弦定理等基础知识.考查运算求解能力,满分13分.()解:在中,由正弦定理,得,又由,得,即.又因为,得到,.由余弦定理可得.()解:由()可得,从而,故,16.本小题主要考查离散型随机变量的分布列与数学期望,互斥事件和相互独立事件的概率计算公式等基础知识.考查运用概率知识解决简单实际问题的能力.满分13分.()解:因为甲同学上学期间的三天中到校情况相互独立,且每天7:30之前到校的概率均为,故,从而.所以,随机变量的分布列为0123随机变量的数学期望.()解:设乙同学上学
11、期间的三天中7:30之前到校的天数为,则,且.由题意知事件与互斥,且事件与,事件与均相互独立,从而由()知 .17.本小题主要考查直线与平面平行、二面角、直线与平面所成的角等基础知识.考查用空间向量解决立体几何问题的方法.考查空间想象能力、运算求解能力和推理论证能力.满分13分.依题意,可以建立以为原点,分别以的方向为轴,轴,轴正方向的空间直角坐标系(如图),可得,.设,则.()证明:依题意,是平面的法向量,又,可得,又因为直线平面,所以平面.()解:依题意,.设为平面的法向量,则即不妨令,可得.因此有.所以,直线与平面所成角的正弦值为.()解:设为平面的法向量,则即不妨令,可得.由题意,有,
12、解得.经检验,符合题意.所以,线段的长为.18.本小题主要考查椭圆的标准方程和几何性质、直线方程等基础知识。考查用代数方法研究圆锥曲面的性质.考查运算求解能力,以及用方程思想解决问题的能力.满分13分.()解:设椭圆的半焦距为,依题意,又,可得,.所以,椭圆的方程为.()解:由题意,设.设直线的斜率为,又,则直线的方程为,与椭圆方程联立整理得,可得,代入得,进而直线的斜率.在中,令,得.由题意得,所以直线的斜率为.由,得,化简得,从而.所以,直线的斜率为或.19.本小题主要考查等差数列、等比数列的通项公式及其前项和公式等基础知识.考查化归与转化思想和数列求和的基本方法以及运算求解能力.满分14
13、分.()解:设等差数列的公差为,等比数列的公比为.依题意得解得故.所以,的通项公式为的通项公式为.()(i)解:.所以,数列的通项公式为.(ii)解: .20.本小题主要考查导数的运算、不等式证明、运用导数研究函数的性质等基础知识和方法.考查函数思想和化归与转化思想.考查抽象概括能力、综合分析问题和解决问题的能力.满分14分.()解:由已知,有.因此,当时,有,得,则单调递减;当时,有,得,则单调递增.所以,的单调递增区间为的单调递减区间为.()证明:记.依题意及(),有,从而.当时,故.因此,在区间上单调递减,进而.所以,当时,.()证明:依题意,即.记,则,且.由及(),得.由()知,当时,所以在上为减函数,因此.又由()知,故.所以,.