《MATLAB、Simulink混沌理论仿真.docx》由会员分享,可在线阅读,更多相关《MATLAB、Simulink混沌理论仿真.docx(34页珍藏版)》请在三一办公上搜索。
1、毕业设计(论文)原创性声明本人郑重声明:所提交的毕业设计(论文),是本人在导师指导下,独立进 行研究工作所取得的成果。除文中已注明引用的内容外,本毕业设计(论文)不 包含任何其他个人或集体已经发表或撰写过的作品成果。对本研究做出过重要贡 献的个人和集体,均已在文中以明确方式标明并表示了谢意。论文作者签名:日期: 年 月 日混沌在现代科学与工程学领域的应用十分广泛,混沌现象存在于自然界各个 领域,包括通讯领域、气象学领域、生物学领域、医学诊断疾病等方面。学习混 沌理论在未来的发展过程对我们是很有帮助的。在非线性的世界里,通过混沌理 论洞察所有的非线性运动,对其进行控制和掌握。通过非线性电路对混沌
2、系统进 行分析和理解,进而构造出符合二阶混沌系统的非线性电路和函数模型Duffing 方程就是典型的二阶非线性方程。运用MATLAB/Simulink对其混沌系统进行仿真 实现,验证混沌系统的基本特性。关键词:混沌;非线性;Duffing方程;MATLAB/SimulinkABSTRACTChaos widely used in modern science and engineering and chaos phenomenon exists in various fields of nature, including the communications field, the field
3、of meteorology, biology, medical diagnosis of diseases. Learning Chaos Theory is very helpful to us in the development of this course in the future. In a nonlinear world, insight into the chaos theory, We can control and master non-linear movement. We analyze and understand the chaotic system via no
4、nlinear circuit, and then construct a second-order chaotic systems of nonlinear circuits and function model. Duffing equation is a typical second-order nonlinear equation. Using MATLAB/Simulink, we complete the chaotic system simulation and test the basic characteristics of chaotic systems.Key words
5、: Chaos; nonlinear; Duffing equation; MATLAB/Simulink第一章绪论11.1混沌理论11.2混沌的应用2第二章二阶混沌系统的仿真实现52.1混沌系统52.1.1混沌产生的数学模型52.1.2奇异吸引子与分形62.1.3混沌系统的特征72.1.4 研究混沌的主要方法82.2 二阶混沌系统的实现9第三章 二阶非线性电路仿真实现153.1 Simulink 仿真173.2 MATLAB语句命令演示模拟19第四章结论22致谢25参考文献26附录A27第一章绪论1.1混沌理论什么是混沌?现代科学意义上是很难得出确切的定义,之所以这样是因为: 到目前为止,还
6、没有足够和统一数学定理可以将混沌理论完全表达出来,在数学 理论的基础上通过混沌系统所表现出的普遍现象总结归纳出混沌的本质。对此, 很多科学家给出很多观点一费根包姆“确定系统的内在随机运动。”洛仑兹“确 定性非周期流。”哈肯:“混沌性为来源于决定性方程的无规运动。”赫柏林:“没 有周期性的有序疽1钱学森:“混沌是宏观无序、微观有序的现象。”等等。综上所述,我们可以对混沌的定义作出如下理解:混沌是指非线性系统在一 定条件下所呈现的不可预测的随机现象;是将有序性与无序性融为一体的现象; 其无序随机性不是来源于外部干扰,而是来源于内部的动力学方程中的非线性项, 正是由于非线性系统在一定的临界性条件下其
7、对初值的敏感性表现出混沌现象, 才导致内在的不稳定性的综合效果。通常我们把研究的对象称为系统,因此基于混沌的研究上我们把混沌称为非 线性系统运动。正因为如此,我们所讨论的对象必然是非线性系统,或者确切地 说是非线性动力系统。如直线函数就是一个最简单的线性函数,变量与自变量成 一次方的函数关系就是在(x,y)平面中是一条直线。而函数y=f(x)对x的依赖关 系高于一次,就像抛物线函数(其中y项是非线性项),那么这个函数所描述的系 统就是“非线性系统”。可见,从函数构造的角度来说,非线性系统要比线性系统 更复杂。线性系统与非线性系统的不同之处至少有两个方面。第一:线性系统可以使 用叠加原理,而非线
8、性系统不能使用相关原理;第二:非线性系统对初值极敏感, 而线性系统只对自变量有依赖关系。正如在运动形式上,线性现象一般表现为时 空中的平滑运动,并可用简单的函数关系表示,而非线性现象则表现为从规则运 动向不规则运动的转化和跃变。非线性系统是复杂不确定的,对它的进一步研究 需要新的方法和思维方式。随着科学的理论研究,适时出现系统论、信息论、耗 散结构、协同学等理论,成为研究非线性系统的主要工具。混沌理论成为非线性 科学的主要研究对象。非线性系统在一定条件下,会表现出一些无规性,严格讲是貌似无规性;因 为在这些貌似无规性中又会出现一定的规律性来,一般就称为系统出现了混沌状 态,简而言之就说出现了混
9、沌,因此给混沌下一个定义的话,简而言之混沌就是 系统的无规行为中的规律性。空间现象中简单与复杂、确定与随机的内在联系引 出的混沌学使人们在观念和哲学方面发生了革命性的转变,因此,混沌理论、相 对论和量子论被称为20世纪最伟大的科学革命。在自然科学发展史上,被称为“近代科学之父”的意大利物理学家与天文学 家伽利略首先在科学实验的基础上融会贯通了数学、物理学和天文学三门知识, 扩大、加深并改变了人们对物体运动和对宇宙的认识,开创了用实验来证实科学 构想的方法。而在伽利略的天文学、力学的基础上,英国的伟大科学家牛顿完成 了经典力学体系,发现并总结了运动定律,创立了万有引力理论,被我们现在用 于解决物
10、体之间的运动问题和力学问题。牛顿的成就也带给了科学界哲学思想上 的确定论,也就是认为一个系统的行为是有规的。一个系统,只要弄清楚它所处 的环境,列出它的运动方程式,给定它的初始条件,则以后的运动状况都是可以 计算出来的,这种系统就是确定性的系统,有规的系统;大量的科学实验可以证 明了这一论断的正确性。而在我们分析系统的过程中,往往忽略排除了一些外界 干扰和对方程过分的近似等,这就是我们相对的确定性的系统。而在后来庞加莱 在研究三体问题中发现方程的解的状况非常复杂,以至于对于给定的初始条件, 当时间趋于无穷时没有办法预测轨道,对于轨道的长时间行为时的不确定性,数 学家和物理学家称之为混沌。庞加莱
11、的发现可以说是混沌理论的最早起源了。1972年12月29日,美国麻省理工学院教授、混沌学开创人之一 E.N.洛伦兹 在研究气候不能精确重演与长期天气预报者无能为力发现混沌系统对初始条件敏 感性的一种依赖现象在美国科学发展学会第139次会议上发表了题为蝴蝶效应 的论文,提出一个貌似荒谬的论断:在巴西一只蝴蝶翅膀的拍打能在美国得克萨 斯州产生一个龙卷风,并由此提出了天气的不可准确预报性。随着对混沌理论更 深层次的研究,人们对混沌的认识正在逐步深化。到目前为止,人们对混沌特征的理解主要体现在如下几个方面:混沌是对初 始值的敏感;混沌是拓扑传递性以及周期点的稠密;混沌是内在的随机性;混沌 是奇异吸引子
12、;混沌是吸引子的杰作,是拉伸与折叠的变换;混沌的签名是分形; 混沌是周期3;混沌是正的李雅普诺夫指数;混沌是拓扑熵大于零;混沌是信息之 源,是信息的膨胀;混沌是局部的不稳定和整体的稳定;混沌是简单和复杂的统 一。混沌正在许多方面改变着人们的自然观:混沌是有序与无序的统一;混沌是 确定性与概率性的统一;混沌是稳定性与不稳定性的统一;混沌是完全性与不完 全性的统一;混沌是自相似性与非自相似性的统一;混沌是一个遵循辩证法规律 的世界1.2混沌的应用混沌在现代科技领域的应用十分广泛,在通讯领域内,通信在我们的生活中 的作用越来越重要,随着电子商务的兴起,对保密通信提出了更高的要求。正是因 为混沌信号最
13、本质的特征是对初始条件极为敏感,并导致了混沌信号的类随机特 性。用它作为载波调制出来的信号当然也具有随机特性。因而,调制混沌信号即 使被敌方截获,也很难被破译,这就为混沌应用于保密通信提供了有利条件。因 此利用混沌进行保密通信是目前十分热门的研究课题。在混沌信号对初始条件极 为敏感,并由此信号又具有整体稳定性,当我们用同一个混沌信号去驱动两个相同 的系统时,两个系统的某些部分将产生同步化的行为,这就为混沌应用于保密通 信提供了可行性。在气象学领域内,早在1904年,挪威气象学家Bjerknes就提出天气预报问 题应提成大气运动方程组的初值问题。在近年的气象研究中,利用混沌进行中期 预报的研究。
14、由于气候系统是非线性系统,其初值问题的数值解是不确定的,研 究气候状态的特征就要研究混沌态的特征,研究气候系统的演变机制就要研究混 沌态的变化。在这些研究中使用的数学工具主要是分形理论,如分数维、李雅普 诺夫指数、标度指数和功率谱指数等。利用这些数学方法分别考察、分析气候状 态特征量随控制变量的变化。在数学上把天气(气候)预报问题提成初值问题,即 用动力学的方法进行预报,从认识论上讲就是把大气看成是确定论的系统,这在 较短的时间尺度内是行得通的,而在时间较长的时候却是有问题的,主要是大气 运动是非线性、强迫和耗散的。由这三大特点,可以得到一幅这样的图像:误差 是随着时间呈指数增加的,初始场的作
15、用随着时间是衰减的,必须考虑能量的补 充和耗散。E.N.洛伦兹发现了 “蝴蝶效应”,指的就是初始场微小的不确定性的指 数放大。这就提出了确定论预报的可预报性问题,中期数值天气预报逐日预报的 可预报时限大约是两三周左右的时间。也就是说进行长期预报是不可能的。在生 物学领域内的研究对我们自然界以及人类的发展具有深远的意义。混沌在生物学研究中的应用主要集中在生态学中的种群变化;医学诊断疾病 等方面。这也许是最后的生命图景。从还原-综合还原高度整合。生命不仅是空 间结构的范畴,更是时间的范畴,千千万万种物质的时空组合和演变,构成复杂 而完美的动态生命体,将生命与非生命区分开来。如何解决生命的本质,很多
16、科 学家认为应从多角度入手,不仅仅是生物学的问题,而是一项系统工程,即未来 的生命科学,必需包含有数学成分。研究人体这一复杂系统,混沌学、甚至弦论 都不可少,只有将这些能研究复杂体系的数理方法融入医学生物学才能带来真正 意义上的生命科学的突破。因为生命的最基本本质是具有时空性、混沌性。生命的整体性,包括:(1)时间上整体,即生命活动的高度有序性;(2)空间上整体,即生命结构和物质相互作用、相互影响形成网络状整体。 如形态上,人体结构和功能混沌调节机制(如免疫网络调控、心脏、肺、肠的分 形结构学原理,心电的混沌产生与心脏普肯野氏纤维分形分布联系等等。在物质 信号相互作用的动力学研究上,其相互作用
17、不仅仅是激活、失活或抑制、促进这 一简单的关系,而应包括复杂的数学过程,这种复杂的数学过程应是非线性的, 很可能符合混沌原理。这是因为这一点,我们可以通过研究生物学的混沌理论从 而彻底了解生命意义。混沌现象存在于自然界的所有领域,在人类社会中的经济领域同样存在着混 沌现象。南美洲热带雨林中的彩蝶轻展双翅,北美大草原竟掀起了一场风暴,这 是极言世界复杂性的蝴蝶效应。对此,美国赛纳尔公司(Cerner,纽约证交所代 码CERN)首席执行官尼尔帕特森对此有刻骨铭心的认识。就因为他向公司400名 中层经理发出的一份电子邮件竟让公司市值在短短三天时间内猛烈下跌了两成, 逾3亿美元蒸发殆尽。类似的事情在经
18、济学领域中数不胜数。由此而应运而生了 经济混沌和经济波动的非线性动力学理论。虽然混沌现象的理论和实验研究在物 理学、化学、生物学、天体物理、气象学以及神经生理学等广泛领域获得重要进 展,但在经济学中遇到严重困难。经济活动是人的行为,动力学系统的时间尺度 和观察者相近。所以经济主体和经济结构随时间的演变难以忽略。时间序列的非 稳态性质使目前常用的稳态时间序列分析方法难以应用。这是为什么经济混沌的 研究比自然科学更为困难。目前混沌理论的研究主要为宏观经济运动,因为发达国家的市场经济周期的 观察积累了大量数据(Zarnowitz, 1992)。在各种代表性的美国宏观经济指数中发 现经济混沌的普遍证据
19、(Chen 1996a,b)。由于目前中国的经济统计数据的收集和 整理还不够充分,例证主要取之于美国的数据。但其可能的应用对中国问题同样 有潜在的可能。混沌理论的应用在其他领域内有诸如此下方面的现象,天体运行的长期行为 不可预测;电路中的混沌现象;非线性系统的控制;利用分形研究物质结构及性 能。因此对于混沌理论的研究还有待进一步探索。本次设计的主要目标是通过对二阶混沌系统的仿真实现完成对混沌系统特征 理解。论文的主要内容包括:第一章:绪论。介绍一下混沌概念以及混沌理论的 应用,说明课题来源。第二章:二阶混沌系统的仿真实现。主要是对混沌系统、 二阶非自治铁磁谐振电路的电路结构、数学模型进行分析,
20、为电路仿真实现提供 理论基础和依据。第三章:二阶非自治铁磁谐振电路仿真实现。详细说明二阶非 自治铁磁谐振电路过程及运用Matlab软件对混沌系统进行模拟仿真结果。第四章: 结论。在二阶非自治铁磁谐振电路的基础上,上述运用Matlab软件对混沌系统进 行模拟仿真结果,讨论了仿真的结果,并介绍了混沌电路研究的意义。对在仿真 实现和理论分析过程中遇到的问题和困难进行总结分析,陈述了主要几个难题及 其解决方法。第二章二阶混沌系统的仿真实现2.1混沌系统2.1.1混沌产生的数学模型随着科学的发展和进步,数学模型的应用到两个经典的例子:一个例子是二 体问题,从经典力学中的开普勒问题、相对论力学中的水星近日
21、点进动,到量子 力学中的氢原子和量子场论中的兰姆谱线位移,贯穿了经典和近代物理学的全部 发展史。另一个例子是在显微镜下观察悬浮在水中的藤黄粉、花粉微粒,或在无 风情形观察空气中的烟粒、尘埃时都会看到的布朗运动,从爱因斯坦的直观处理 和朗之万方程、福克一普朗克方程、到涨落耗散定理的现代表述和随机过程的连 续积分表示,引出了整个物理学中的概率论描述体系。这两个例子,一个为确定 论,另一个则为概率论。同样混沌系统科学研究是基于数学模型进行理论研究, 对于确定论系统中的随机性,即混沌现象,在此现象下也存在着特别的模型,这 就是一维迭代过程。迭代函数是重复的与自身复合的函数,这个过程叫做迭代。 迭代是非
22、线性方程演化过程的有力工具。为了研究一个物理系统,把系统的状态 用一组变量x,y,z.描述,它们都是时间t的函数,同一个系统还受某些可以调 节的“控制参量”的影响。最简单的情景是固定一组参量,把时间变化限制成等 间隔的t,t+1,t+2.,看下一个时刻的系统状态如何依赖于当前状态。在只有一 个状态变量x时,这个演化过程可以由一个非线性函数描述。Logistic方程是一个很简单的非线性的抛物线函数,可以表示为:Y =况(1 x),(0 x 1,0 X 4)(2.1.1.1)这个函数以X的值代入得到Y后,可以用Y的值作为新的X值得出新的Y值, 这样的迭代可以不断地进行下去,因此这个函数可以采用以下
23、的迭代形式:x 1 =1x(1 - x)(0 x 1,0 X 4)(2.1.1.2)其中xn是n次迭代时的值,七h是n+1次迭代时的值。这里迭代前后的值都 是X值,n次迭代得到的所有的值都可以在x轴上表示出来,因此它是一维迭代。 这个迭代过程是通过抛物线函数把七变换(或映射)成x的过程,所以它常被 Logistic映射或抛物线映射。随着入参数,迭代过程显示:最终有无数点无规地 出现,确定性系统中出现的类似随机的过程,系统进入了混沌状态。迭代函数的 行为十分敏感地依赖于非线性的程度,即入的大小。一维非线性映射只对应于耗 散系统是不可逆的,而二维映象在一维和高维之间许多方面起着衔接作用。所以 说二
24、维系统的混沌现象,出现在耗散系统和保守系统中。在保守系统中,由于系 统的哈密顿函数H二常数(H=T2-TO+V式中的T2和TO分别为系统动能表示式中广 义速度的二次项和零次项),系统存在一个能量积分,所以一维保守系统不可能出 现混沌。二维哈密顿系统中研究较多的是所谓“标准映象”它出现在许多自由度 为2的非线性振子理论中,是带电粒子在环行磁场中运动的一种模型。二维耗散 系统中研究最多的一例是所谓埃农(HCnon)映射,令系统参数为b,只要b0, 变换就是可逆的,b = 1时,它保持相体积不变,是一种保守系统。b 为阻尼系数。g(x)是含有三次方项的非线性函数,f(x,t)为一个周期 函数。Duf
25、fing方程通常作如下分类:(1)假设g(x)满足超线性条件:lim 巫=+8 x s x则称Duffing方程是超线性的;(2)假设g(x)满足次线性条件:lim = 0, x T8 X则称Duffing方程是次线性的;g G)g G) lim sup +8x x(3) 假设g(x)满足半线性条件:0 0,b 0W-i曲线关于原点对称,做变量代换,x =W, y = e,- = 1,- = 1, - = ek,-m = ef, e =dx空 dT令2C2CSCR2CR3R,将状态方程改写=y=一 C + x 3)一 eky + ef cost该式被称为Duffing方程。混沌振动是一种由确定
26、性系统产生对于初始条件极为敏感而具有随机性和长 期预测不可能性的往复非周期运动。考虑一个由非线性磁链和线性电感组成的电 流和磁链系统在简谐激励作用下的受迫振动。电感电流与磁通链数的关系满足:iW)= aW + bW3,a 0,b 0则系统的状态方程为d 2 xdxm+ nx + kx3 = ek + ef cos w tdt 2dt设上述系统的参数为:m = 1.0, ek = 0.5, k = 1.0, ef = 7.5, w = 1.0 n = 0 取两组差别很小的初值:气(0)= 3.0, (0)= 4.0x2(0)= 3.01, 2(0)= 4.02图2.2两个初值下的时间历程从图中可
27、以看到,随着时间的变化,开始很接近的两个信号越来越分开,这 就是系统对初值的敏感性,这也是混沌振动的一个基本特征,这也使得混沌振动 具有长期不可预测性仅有初值敏感性还不能称为混沌振动,混沌振动还必须是往 复的非周期性运动,这是非线性系统的又一个特征。混沌振动的往复非周期性可以用相平面图的几何方法表示出来。图2.3相平面图当周期运动的周期很长时,仅根据相平面图难以区分周期振动和混沌振动, 而Poincare映射的几何方法能更好地刻划混沌振动的往复非周期性。Poincare映 射就是按系统激励的周期采样,将相轨线离散化为相点,用较少的数据获得较多 信息。不同的Poincare映射图形对应着不同的运
28、动形态。当 m=1.0,ek=0.5,k=1.0,ef=7.5,w=1.0,n=0 具有分形结构的 Poincare 映射图图2.4 Poincare映射图第三章二阶非线性电路仿真实现MATLAB产品家族是美国MathWorks公司开发的用于概念设计,算法开发,建 模仿真,实时实现的理想的集成环境。由于其完整的专业体系和先进的设计开发 思路,使得MATLAB在多种领域都有广阔的应用空间,特别是在MATLAB的主要 应用方向科学计算、建模仿真以及信息工程系统的设计开发上已经成为行业 内的首选设计工具,MATLAB用户广泛的分布在航空航天,金融财务,机械化工, 电信,教育等各个行业。在MATLAB
29、产品家族中,MATLAB工具箱是整个体系的基座, 它是一个语言编程型(M语言)开发平台,提供了体系中其他工具所需要的集成环 境(比如M语言的解释器)。同时由于MATLAB对矩阵和线性代数的支持使得工具 箱本身也具有强大的数学计算能力。MATLAB产品体系的演化历程中最重要的一个 体系变更是引入了 Simulink,用来对动态系统建模仿真。其框图化的设计方式和 良好的交互性,对工程人员本身计算机操作与编程的熟练程度的要求降到了最低, 工程人员可以把更多的精力放到理论和技术的创新上去。在MATLAB/Simulink基 本环境之上,MathWorks公司为用户提供了丰富的扩展资源,这就是大量的To
30、olbox 和Blockset。从1985年推出第一个版本以后的近二十年发展过程中,MATLAB已 经从单纯的Fortran数学函数库演变为多学科,多领域的函数包,模块库的提供 者。用户在这样的平台上进行系统设计开发就相当于已经站在了巨人的肩膀上, 众多行业中的专家、精英们的智慧结品可以信手拈来。同时,MATLAB开放的体系 结构允许用户在平台上进行自由扩展,目前在全世界范围内已经有大量的商业的 或者免费的MATLAB二次开发产品发布。用户购买一套MATLAB,获得的是世界范围 的专家支持。而对于用户自己开发的算法包,MATLAB也提供了包括Compiler应用 发布和Web网络发布在内的众多方式的发布途径,使得用户一方面能够充分地利 用MATLAB的算