《线性规划问题在工商管理中的应用.ppt》由会员分享,可在线阅读,更多相关《线性规划问题在工商管理中的应用.ppt(30页珍藏版)》请在三一办公上搜索。
1、第四章,线性规划问题的应用,用最少的劳动力来满足工作的需要。,一、人力资源分配的问题,例:某昼夜服务的公交线路每天各时间段内所需司机和乘务人员数如下:,设司机和乘务人员分别在各时间段一开始时上班,并连续工作8h,问该公交线路怎样安排司机和乘务人员,既能满足工作需要,又配备最少司机和乘务人员?,解:设 xi 表示第i班次时开始上班的司机和乘务人员数,这样我们建立如下的数学模型。目标函数:Min x1+x2+x3+x4+x5+x6 约束条件:s.t.x1+x6 60 x1+x2 70 x2+x3 60 x3+x4 50 x4+x5 20 x5+x6 30 x1,x2,x3,x4,x5,x6 0,二
2、、生产计划问题,合理利用人力、物力、财力等有限资源,使获利最大。,vn,v2,v1,产值,pm,bm,amn,am2,am1,m,p2,p1,资源单价,b2,b1,资源数量,a2n,a1n,n,2,a22,a21,2,a12,a11,1,1,产品,资源,生产计划数据表,生产计划例题,例:明兴公司生产甲、乙、丙三种产品,都需要经过铸造、机加工和装配三个车间。甲、乙两种产品的铸件可以外包协作,亦可以自行生产,但产品丙必须本厂铸造才能保证质量。数据如下页表。问:公司为了获得最大利润,甲、乙、丙三种产品各生产多少件?甲、乙两种产品的铸造中,由本公司铸造和由外包协作各应多少件?,解:设 x1,x2,x3
3、 分别为三道工序都由本公司加工的甲、乙、丙三种产品的件数,x4,x5 分别为由外协铸造再由本公司机加工和装配的甲、乙两种产品的件数。,求xi 的利润:利润=售价各成本之和可得到xi(i=1,2,3,4,5)的利润分别为15、10、7、13、9元。这样我们建立如下数学模型:目标函数:Max 15x1+10 x2+7x3+13x4+9x5 约束条件:s.t.5x1+10 x2+7x3 8000 6x1+4x2+8x3+6x4+4x5 12000 3x1+2x2+2x3+3x4+2x5 10000 x1,x2,x3,x4,x5 0,例:永久机械厂生产、三种产品,均要经过 A、B 两道工序加工。假设有
4、两种规格的设备A1、A2能完成 A 工序;有三种规格的设备B1、B2、B3能完成 B 工序。可在 A、B的任何规格的设备上加工;可在任意规格的A设备上加工,但对B工序,只能在B1设备上加工;只能在A2与B2设备上加工;数据如下页表。问:为使该厂获得最大利润,应如何制定产品加工方案?,解:设 xijk 表示第 i 种产品,在第 j 种工序上的第 k 种设备上加工的数量。利润=(销售单价原料单价)产品件数之和(每台时的设备费用设备实际使用的总台时数)之和。,建立数学模型:Max 0.75x111+0.7753x112+1.15x211+1.3611x212+1.9148x312-0.375x121
5、-0.5x221-0.4475x122-1.2304x322-0.35x123 s.t 5x111+10 x2116000(设备 A1)7x112+9x212+12x31210000(设备 A2)6x121+8x221 4000(设备 B1)4x122+11x3227000(设备 B2)7x123 4000(设备 B3),x111+x112-x121-x122-x123=0(产品在A、B工序加工的数量相等)x211+x212-x221=0(产品在A、B工序加工的数量相等)x312-x322=0(产品在A、B工序加工的数量相等)xijk0,i=1,2,3;j=1,2;k=1,2,3,三、套裁下料
6、问题,如何下料使用材最少。,例:某工厂要做100套钢架,每套用长为2.9 m,2.1m,1.5m的圆钢各一根。已知原料每根长7.4 m,问:应如何下料,可使所用原料最省?,解:考虑下列各种下料方案(按一种逻辑顺序给出),把各种下料方案按剩余料头从小到大顺序列出,假设 x1,x2,x3,x4,x5 分别为上面前 5 种方案下料的原材料根数。我们建立如下的数学模型。目标函数:Min x1+x2+x3+x4+x5 约束条件:s.t.x1+2x2+x4 100 2x3+2x4+x5 100 3x1+x2+2x3+3x5 100 x1,x2,x3,x4,x5 0,在原料供应量的限制下如何获取最大利润。,
7、四、配料问题,例:某工厂要用三种原料1、2、3混合调配出三种的产品甲、乙、丙,数据如下表。问:该厂应如何安排生产,使利润收入为最大?,解:设 xij 表示第 i 种(甲、乙、丙)产品中原料 j 的含量。这样我们建立数学模型时,要考虑:,对于甲:x11,x12,x13;对于乙:x21,x22,x23;对于丙:x31,x32,x33;对于原料1:x11,x21,x31;对于原料2:x12,x22,x32;对于原料3:x13,x23,x33;,目标函数:利润最大,利润=收入原料支出 约束条件:规格要求 4 个;供应量限制 3 个。,Maxz=-15x11+25x12+15x13-30 x21+10
8、x22-40 x31-10 x33,s.t.0.5 x11-0.5 x12-0.5 x13 0(原材料1不少于50%)-0.25x11+0.75x12-0.25x13 0(原材料2不超过25%)0.75x21-0.25x22-0.25x23 0(原材料1不少于25%)-0.5 x21+0.5 x22-0.5 x23 0(原材料2不超过50%)x11+x21+x31 100(供应量限制)x12+x22+x32 100(供应量限制)x13+x23+x33 60(供应量限制)xij0,i=1,2,3;j=1,2,3,五、投资问题,从投资项目中选取方案,使投资回报最大。,例:某部门现有资金200万元,
9、今后五年内考虑给以下的项目投资。已知:项目A:从第一年到第五年每年年初都可投资,当年末能收回本利110%;项目B:从第一年到第四年每年年初都可投资,次年末能收回本利125%,但规定每年最大投资额不能超过30万元;项目C:需在第三年年初投资,第五年末能收回本利140%,但规定最大投资额不能超过80万元;项目D:需在第二年年初投资,第五年末能收回本利155%,但规定最大投资额不能超过100万元。,问:a)应如何确定这些项目的每年投资额,使得第五年年末拥有资金的本利金额为最大?b)应如何确定这些项目的每年投资额,使得第五年年末拥有资金的本利在330万元的基础上使得其投资总的风险系数为最小?,据测定每
10、万元每次投资的风险指数如下表:,解:1)确定决策变量:连续投资问题 设 xij(i=15,j=1、2、3、4)表示第 i 年初投资于A(j=1)、B(j=2)、C(j=3)、D(j=4)项目的金额。这样我们建立如下决策变量:A x11 x21 x31 x41 x51 B x12 x22 x32 x42 C x33 D x24,2)约束条件:第一年:A当年末可收回投资,故每年初都应把全部资金投出去,于是:x11+x12=200第二年:B次年末才可收回投资故第二年年初的资金为1.1x11,于是:x21+x22+x24=1.1x11第三年:年初的资金为1.1x21+1.25x12,于是:x31+x3
11、2+x33=1.1x21+1.25x12第四年:年初的资金为1.1x31+1.25x22,于是:x41+x42=1.1x31+1.25x22第五年:年初的资金为1.1x41+1.25x32,于是:x51=1.1x41+1.25x32B、C、D的投资限制:xi2 30(i=1,2,3,4),x33 80,x24 100,a)Max z=1.1x51+1.25x42+1.4x33+1.55x24s.t.x11+x12=200 x21+x22+x24=1.1x11 x31+x32+x33=1.1x21+1.25x12 x41+x42=1.1x31+1.25x22 x51=1.1x41+1.25x32
12、 xi2 30(i=1、2、3、4),x33 80,x24 100 xij0(i=1,2,3,4,5;j=1,2,3,4),3)目标函数及模型:,b)Min f=(x11+x21+x31+x41+x51)+3(x12+x22+x32+x42)+4x33+5.5x24 s.t.x11+x12 200 x21+x22+x24 1.1x11 x31+x32+x33 1.1x21+1.25x12 x41+x42 1.1x31+1.25x22 x51 1.1x41+1.25x32 xi2 30(i=1、2、3、4),x33 80,x24 100 1.1x51+1.25x42+1.4x33+1.55x24 330 xij0(i=1,2,3,4,5;j=1,2,3,4),