《地下建筑结构第03章弹性地基梁.ppt》由会员分享,可在线阅读,更多相关《地下建筑结构第03章弹性地基梁.ppt(59页珍藏版)》请在三一办公上搜索。
1、弹性地基梁理论,1.概述,定义:,弹性地基梁,是指搁置在具有一定弹性地基上,各点与地基紧密相贴的梁。如铁路枕木、钢筋混凝土条形基础梁,等等。,作用:通过这种梁,将作用在它上面的荷载,分布到较大面积的地基上,既使承载能力较低的地基,能承受较大的荷载,又能使梁的变形减小,提高刚度降低内力。,1.概述,地下建筑结构的计算,与弹性地基梁理论有密切关系。地下建筑结构弹性地基梁可以是平放的,也可以是竖放的,地基介质可以是岩石、粘土等固体材料,也可以是水、油之类的液体介质。弹性地基梁是超静定梁,其计算有专门的一套计算理论。,1.荷载种类和组合,弹性地基梁与普通梁的区别:,普通梁只在有限个支座处与基础相连,是
2、有限个未知力,弹性地基梁具有无穷多个支点和无穷多个未知反力。超静定次数是无限还是有限,这是它们的一个主要区别普通梁的支座通常看作刚性支座,即可以略去地基的变形,只考虑梁的变形,弹性地基梁则必须同时考虑地基的变形。地基的变形是考虑还是略去,这是它们的另一个主要区别。,2.弹性地基梁的计算模型,计算模型分类:,.,局部弹性地基模型2.半无限体弹性地基模型,局部弹性地基模型,1867年前后,温克尔(E.Winkler)假设:地基表面任一点的沉降与该点单位面积上所受的压力成正比。即,(3-1),优点:,可以考虑梁本身的实际弹性变形,消除了反力直线分布假设中的缺点。,局部弹性地基模型,缺点:,没有反映地
3、基的变形连续性,故温克尔假设不能全面反映地基梁的实际情况。,2.半无限体弹性地基模型,把地基看作一个均质、连续、弹性的半无限体(所谓半无限体是指占据整个空间下半部的物体,即上表面是一个平面,并向四周和向下方无限延伸的物体)。,假设:,优点:,1、地基的连续整体性;2、几何物理上简化模型,缺点:,1、地基土非连续;2、地基土非均质;,3.弹性地基梁的挠度曲线微分方程式及其初参数解,基本假设:,1.弹性地基梁的挠度曲线微分方程式,左图所示为局部弹性地基梁上的长为l、宽度为b单位宽度1的等截面直梁,在荷载 及Q作用下,梁和地基的沉陷为,梁与地基之间的反力为。在局部弹性地基梁的计算中,通常以沉陷函数
4、作为基本未知量,地基梁在外荷载、Q作用下产生变形,最终处于平衡状态,选取坐标系xoy,外荷载,地基反力,梁截面内力及变形正负号规定如右图所示。,1.弹性地基梁的挠度曲线微分方程式,为建立 应满足的挠曲微分方程,在梁中截取一微段,考察该段的平衡有:,得:,得:,化简得:,将上式对于x求导得:,略去二阶微量得:,(3-2),(3-3),(3-4),如果梁的挠度已知,则梁任意截面的转角Q,弯矩M,剪力Q可按材料力学中的公式来计算,即:,1.弹性地基梁的挠度曲线微分方程式,此即为弹性地基梁的挠曲微分方程式,令,若地基梁宽度为b,则有,2.对应齐次微分方程的通解,上面推导得弹性地基梁的挠曲微分方程式是一
5、个四阶常系数线性非齐次微分方程,令式中,,即得对应齐次微分方程:,由微分方程理论知,上述方程的通解由四个线性无关的特解组合而成。为寻找四个线性无关的特解,令,并代入上式有:,由复数开方根公式得:,是与梁和地基的弹性性质相关的一个综合参数,反映了地基梁与地基的相对刚度,对地基梁的受力特性和变形有重要影响,通常把,(3.7),(3.8),(3.9),常系数齐次线性微分方程,一般形式,(8),二阶,(9),设想(9)有形式解 y=erx(为什么?),(10),r2+pr+q=0,故有,(10)式称为(9)的特征方程,分三种情形讨论,(i)=p2 4q 0,(10)有两个不等实根 r1,r2.,(9)
6、的通解为,代入得,(r2+pr+q)erx=0,(ii)=0,r1=r2(=r),此时 y1=erx.,(9)的通解为,(iii)0,r1,2=i 为一对共轭复根.,得(9)的两个复数形式的解,Y1=e(+i)x,Y2=e(i)x,由叠加原理,知,也是(9)的解,且线性无关,故(9)的通解为,特征根,方程的通解,一对共轭复根r1,2=i,两个不等的实根r1,r2,两个相等的实根r1=r2=r,(0),解:特征方程是,r2 r 6=0,其根r1=3,r2=2是两个相异实根,故所求通解为,y=C1e3x+C2e2x.,例8.求解方程 4y+12y+9y=0.,解:特征方程是,4r2+12r+9=0
7、.,此方程有二重实根,故所求通解为,例9.求解方程 y6y+13y=0.,解:特征方程是,r2 6r+13=0.,其根 r1,2=32i为一对共轭复根,故所求通解为,特征根,对应的线性无关的特解,(1)单实根 r,r1,2=i,(2)k重实根 r,(3)一对单复根,r=i,(4)一对k重复根,(0),(0),表12-1,例10.求解方程,y(4)2y+5y=0.,解:特征方程为,r42r3+5r2=0.,对应线性无关的特解为y1=1,y2=x,y3=excos2x,y4=exsin2x,故所求通解为,其根为r1=r2=0,r3,4=12i.,2.对应齐次微分方程的通解,由上式(3.8),分别令
8、时k=1,2,3时,即可得四个线性无关的特解,将其进行组合并引入四个积分常数,即得齐次微分方程式(3.7)的通解;,利用双曲函数关系:,且令,则有,式中B1、B2、B3、及B4均为待定积分常数,式(3.10)和式(3.11)均为微分方程(3.7)的通解,在不同的问题中,有各自不同的方便之处。,(3.10),(3.11),(一)初参数法,3.初参数解,由式(3.11),再据式(3.5)有,(3.12),式(3.12)中积分常数B1、B2、B3、B4的确定是一个重要环节,梁在任一截面都有四个参数量,即挠度y、转角、弯矩M、剪力Q、而初始截面(x=o)的四个参数、就叫做初参数。,用初参数法计算了弹性
9、地基梁的基本思路是,把四个积分常数改用四个初参数来表示,这样做的好处是:使积分常数具有明确的物理意义;根据初参数的物理意义来寻求简化计算的途径。,3.初参数解,(二)用初参数表示积分常数,如图3.4所示,梁左端的四个边界条件(初参数)为,(3.13),将上式代入式(3.12),解出积分常数得:,(3.14),3.初参数解,再将式(3.14)代入式(3.12),并注意,则有,(3.15),3.初参数解,其中,、及称为双曲线三角函数,它们之间有如下微分关系:,3.初参数解,式(3.7)等价于地基梁仅在初参数作用下的挠曲微分方程,式(3.6)等价于地基梁既有初参数作用,又有外荷载作用的挠曲微分方程,
10、其特解项就是仅在外荷载作用下引起的梁挠度的附加项。下面根据梁上作用的各种形式荷载分别加以讨论。,4.弹性地基梁挠曲微分方程的特解,(一)集中荷载作用的特解项,1、集中力作用的特解项。,如图3.5为一弹性地基梁,O端作用有初参数、,A点有集中力p。设y1为OA段的挠度表达式,y2为AB段的挠度表达式,由梁上无分布荷载作用,故OA和AB段的挠曲微分方程分别为,4.弹性地基梁挠曲微分方程的特解,其中,式(3.16a)的解可用梁端初参数来表示,即,(3.17),式(3.16b)的解可用初参数作用下的解y1与集中力pi单独作用下引起的附加项叠加,即,将式(3.18)代入式(3.16b),并注意式(3.1
11、6a)有,(3.19),比较式(3.16a)和式(3.16b)知,式(3.19)解的形式与式(3.17)相同,不同之处是将x换为,四个初参数应解释为 处的突变挠度,转角,弯矩,剪力,故有,(3.20),4.弹性地基梁挠曲微分方程的特解,由A点的变形连续条件和受力情况有,代入式(3.20),并据式(3.5)得,(3.21),当 时,取特解项为零。,4.弹性地基梁挠曲微分方程的特解,2、集中力偶mi作用的特解项。,由pi作用下特解项的推导结果可知,挠度附加项形式与初参数Q。作用下的挠度相同,只是坐标起点与符号不同。同理,在集中力偶mi作用下挠度附加项与初参数M。作用下挠度也具有相同的形式,如图3.
12、6所示,Mo=Mi,故有,(3.22),当 时,取特解项为零。,4.弹性地基梁挠曲微分方程的特解,(二)分布荷载作用下的特解项,分布荷载可分解成多个集中力,按集中力求特解项,为此,在x截面左边,离端点的距离为u处取微段du,微段上荷载为qdu,此微荷载在它右边的截面x处引起的挠度特解项为(如图3.7),而x截面以左所有荷载引起的特解项为,(3-23),下面讨论分布荷载的几种特殊情况。,4.弹性地基梁挠曲微分方程的特解,1、均布荷载,如图3.7,荷载均布于ab段,对于oa段显然没有附加项,当 时,积分限是,由式(3.23)及式(3.5)有,(3.24),当 时,积分限是(xa、xb),由式(3.
13、23)及式(3.5)有,(3.25),4.弹性地基梁挠曲微分方程的特解,当荷载满跨均布时,积分限是(o、x),故有,(3.26),2、三角形分布荷载,如图3.8所示,三角形荷载分布于ab段,有,(3.27),当 时,积分限为,由式(3.27)及式(3.5)得,4.弹性地基梁挠曲微分方程的特解,(3.28),当 时,积分限是,同理得,(3.29),当三角形荷载布满全跨时,积分限是(o、x)有,(3.30),3、梁全跨布满梯形荷载的特解项。,如图3.9所示的地基梁在梯形荷载作用下的特解项只须把式(3.26)与式(3.30)两式叠加即可。,4.弹性地基梁挠曲微分方程的特解,4.弹性地基梁挠曲微分方程
14、的特解,(三)弹性地基梁在、共同作用下挠曲微分方程的通解,如图3.10所示的弹性地基梁,同时作用有集中力、力偶、均布载、三角载时,综合各种荷载的影响,就可得出挠度的一般公式,进行微分运算后,还可得出转角、弯矩及剪力的一般公式,即,4.弹性地基梁挠曲微分方程的特解,式(3.31)中,当,时,pi、mi两项取值为零。,(3.31),4.弹性地基短梁、长梁及刚性梁,短梁(又称有限长梁)(图3.11(a),当弹性地基梁的换算长度 时,属于短梁,它是弹性地基梁的一般情况。长梁:无限长梁(图3.11(b)、半无限长梁(图3.11(c)。当换算长度 时,属于长梁;若荷载作用点距梁两端的换算长度均 时,可忽略
15、该荷载对梁端的影响,这类梁称为无限长梁;若荷载作用点仅距梁一端的换算长度 时,可忽略该荷载对这一端的影响,而对另一端的影响不能忽略,这类梁称为半无限长梁,无限长梁可化为两上半无限长梁。刚性梁(3.11(b),当换算长度 时,属于刚性梁。这时,可认为梁是绝对刚性的,即EI或20。,上节的结果,能直接用于计算各种几何尺寸及弹性特征值 的弹性地基等截面直梁。在工程实践中,经计算比较及分析表明,可根据不同的换算长度,将地基梁进行分类,然后采用不同的方法进行简化。通常将弹性地基梁分为三种类型。,弹性地基梁的分类,长梁、短梁和刚性梁的划分标准主要依据梁的实际长度与梁和地基的相对刚度之乘积,划分的目的是为了
16、简化计算。事实上,长梁和刚性梁均可按上一节介绍的公式进行计算,但长梁、刚性梁与短梁相比有其自身的一些特点,较短梁相比,计算可以进一步简化。,1.长梁的计算,(一)无限长梁作用集中力Pi的计算,如图3.12所示,梁上作用有集中力Pi,由于力作用点至两端点均满足,故把梁看作无限长梁。又因梁上分布荷载,为便于分析,现采用梁挠曲方程齐次解式的形式,即 由条件;又由对称条件知:考虑地基反力与外载Pi的平衡条件:,式(3.10)可写为,(3.32),最后可得无限长梁右半部分的挠度、转角、弯矩及剪力:,1.长梁的计算,(3.33),其中,对于梁的左半部分,只需将式(3.33)中Q和改变符号即可。,(二)无限
17、长梁在集中力偶mi作用下的计算,如图3.13(a)所示无限长梁,作和集中力偶,,尽管mi作用点并不一定在梁的对称截面上,但只要mi作用点到两端满足,则mi作用点,就可看作是梁的对称点,因而可把梁分为两根半无限长梁(图3.13(b)、(c))。梁对称截面上的反对称条件为,代入式(3.10)得A1=A2=A3=0及,最后得无限长梁右半部分的变形及内力为:,(3.34),对于左半部分,只需将上式中y与M变号即可。,(二)无限长梁在集中力偶mi作用下的计算,(三)半无限长梁作用初参数的计算,如图(3.14)所示的半无限长梁,梁端作用,有初参数,因,故可借助挠曲方程齐次解的结果,为了方便分析,采用式(3
18、.11)的形式:,由 代入上式得,故有B1=-B3,B2=-B4,再由 得,最后得,(3.35),如梁端作用有初参数、,则可得、与、之间的关系为,(三)半无限长梁作用初参数的计算,(四)半无限长梁在梯形荷载作用下的计算,如图3.15所示的半无限长梁,作用分布荷载q、q,挠曲方程为式(3.7)。容易验证,是式(3.7)的一个特解,故在梯形分布荷载作用下半无限长梁任一截面的变形与内力为:,(3.36),2.刚性梁的计算,如图3.16所示的则性梁,梁端作用有初参数 和,并有梯形分布的荷载作用,显然,地基反力也呈梯形分布,接静定梁的平衡条件,可得刚性梁的变形与内力为:,(3.37),5.算例,例题3.
19、1如图3.17所示,两端自由的弹性地基梁,长l=4m,宽b=0.2m,EI=1333103Nm2,地基的弹性压缩系数K=4.0104kN/m3,求梁1、2及3截面的弯矩。,解:(1)判断梁的类型,考虑集中载距右端为1m,故属短梁。,(2)计算初参数,据式(3.31)中M、Q表达式为,将各数值代入后得,(3)计算各截面的弯矩,例题3.2已知弹性地基梁DE,长度l及弹性特征系数 为已知,作用荷载如图3.18所示,如果,试求截面的挠度、转角、弯矩 及剪力。,解:(1)由于,故为无限长梁。,(2)求出每一荷载单独作用下地基梁的内力和变形,然后再叠加得出地基梁总内力和总变形。应当注意,对于集中力作用情况,要分清所求截面是作用点左边,还是右边,如所求截面在作用点左边,则需将所求得的相应项改变符号。,由式(3.33)和式(3.34)得,第三章 作业:P68思考题:3习题:3,谢 谢,