地源热泵外文翻译.docx

上传人:小飞机 文档编号:5088029 上传时间:2023-06-03 格式:DOCX 页数:14 大小:161.68KB
返回 下载 相关 举报
地源热泵外文翻译.docx_第1页
第1页 / 共14页
地源热泵外文翻译.docx_第2页
第2页 / 共14页
地源热泵外文翻译.docx_第3页
第3页 / 共14页
地源热泵外文翻译.docx_第4页
第4页 / 共14页
地源热泵外文翻译.docx_第5页
第5页 / 共14页
亲,该文档总共14页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

《地源热泵外文翻译.docx》由会员分享,可在线阅读,更多相关《地源热泵外文翻译.docx(14页珍藏版)》请在三一办公上搜索。

1、附件1:外文资料翻译译文地源热泵系统的现状分析及与其它热力方式的比较Stuart J. Self *, Bale V. Reddy, Marc A. RosenFaculty of Engineering and Applied Science, University of Ontario Institute of Technology, 2000 SimcoeStreet North, Oshawa, Ontario, Canada L1H 7K4摘要在很多地区供热在生活中是必不可少的,且不断增长的能源需求和污染物的排放使传统的加热 技术受到挑战,包括地热。对地源热泵系统的评估包括热泵技术、

2、接地情况、当今世界上的地位和 近期的发展。对地源热泵和传统加热方式在成本、二氧化碳排放及其它参数方面进行比较。当电价 较低的时候用地源热泵是经济实惠的。当电力生产利用能源率较高时选择地源热泵机组有着最低的 污染排放量。关键词热力地热能热泵蓄能效率经济1 引言全球的大部分能源供应被用来发电和对特定空间的供热,这些能源多数来自化石燃 料。化石燃料的总量有限而且它的燃烧对环境是有害的:排放导致气候变化的温室气体 和其它污染物。我们对能源的需求正在不断增长而且完全可以预见到未来化石燃料的短 缺1。Hammond2认为伴随化石燃料的燃烧产生的全球变暖和污染物排放对于构建可持 续发展的能源系统是一个不容忽

3、视的因素。这种担心对于降低整个社会对化石燃料的依 赖有着积极的影响,它使人们有意识的降低对能源的需求并且努力寻找替代能源。寻找 对环境更加友好且经济的能源来替代传统化石燃料燃烧。除化石燃料以外,地球表面下储存着丰富的热能。由于污染物的排放远远低于传统 的化石燃料燃烧能源系统,所以说地热能源系统是非常环保的3,4。地热能源的利用主要通过三种方法:发电、直接供热、通过地源热泵间接的供热或 制冷。这三种利用方法分别用到了地热的高、中、低三个不同温度的资源。高温和中温 的能源通常来源于由熔化的地壳产生的热流体,从大面积的水或者熔浆中聚集。低温能 源接近周围的环境温度而且大多源于地表和周围空气对太阳能的

4、吸收。高、中温热力能源一般都在地球深处5,而由于钻孔和其它开发方法在极深地方的 费用会变得很高,所以深度对开发高、中温热力能源的经济性有很大的影响。低温地热资源丰富而且在全世界大多数地区都可以开发和利用。由于深度较小涉及问题少,提取 这种能源相当的简单。热泵提高低温热源的温度使之达到实际应用的需求。地源热泵可 以使空间加热变得环保和经济,并且可以应用于一定空间的制冷。本文审视地源热泵系统并且把它和其它的热力系统进行比较,以提高对地源热泵的 认识并且提高它在合适情况下的利用率。2 地源热泵地源热泵能够经济高效的提供热量,并且排放的污染物很少6。热泵的概念自1800 年被人所认可,至今已经商用约六

5、十余年。类似于冰箱,热泵将较低温度热源中的热量 转移到温度较高的介质中7。热泵提供的热量是可利用的,通常应用于适宜的温度环境 下来保持一定空间的舒适性。热泵最有吸引力的一个特点是,热泵所传输的热量会多于 运行过程本身所需求的能量4,8。地源热泵(GHPs),也被称作土壤源热泵、地热能量系统、地下耦合热泵、地面耦 合热泵9,10,是由三个主要系统:地源热泵:使热量在地面和建筑间转移并改变热量的温度11。接地系统:通过换热器促进热量从地面的吸收,供给地源热泵11。室内供热系统:调整和输送适度的热量到特定空间11,12。2.1热泵系统热泵系统以电为动力驱动压缩机,来保持工质必要的浓度同时传递热能4,

6、8。基本的 热泵系统用于运行蒸汽压缩制冷循环。热泵内的工质通常是使用制冷剂,制冷剂的选择 由地源热泵的整体特点和要求所决定6,13。地源热泵系统通过控制工质的压缩和膨胀来 改变其压力和温度,从而实现热量在地源和供热空间之间的传递4,8,11。热泵主要包括五 个组件(图1) 10,11,14:压缩机、膨胀阀、换向阀、两个热交换器。当然还有很多小型的 组件和配件,例如:风机、管道和辅助控制系统。压缩机J四通 一:1 口一 1土。-、仙T质一地面:襁貌器换也器膨服阀过醐蒸汽降温器 L 图1地源热泵系统及减温器基本布局地源热泵的加热流程如下12:从地源吸收热能并输送到蒸发器。热泵机组内制冷剂占主导地位

7、的工质进入蒸发器,热量从接地系统转移到工质 中从而引起制冷剂升温沸腾成为压力较低的蒸汽;温度略有增加。蒸发器中产生的蒸汽进入电动压缩机,压缩之后成为高温高压蒸汽。高温蒸汽进入冷凝器。此时制冷剂高于外部空间,从而促使热量热量从制冷剂 传递到建筑空间中。制冷剂降温凝结,成为高温高压液体。热液体通过膨胀阀,压力降低从而使温度下降。制冷剂再次进入蒸发器,开始 下一个循环包括制冷系统在内的许多系统是要把特定空间中的热量转移释放到土地中去。在制 冷模式下,四通阀作用于流体,使工质在循环中按照相反的方向流动。换热器的功能反 转,与地源相连的热交换器成为冷凝器,建筑空间中的热交换器成为蒸发器8,12。有一些系

8、统,包括减温器(图1),作为辅助换热器将热量传递到一个热水箱。减温 器安装在压缩机出口处,将压缩气体所产生的热量通过热水箱传递到水循环中,这样一 来能够降低甚至消除加热水所需的热量。能源利用效率优劣的评价,一般是用系统产出的能量比上运行系统所消耗的能量。 热泵所能产出的热量多于输入热泵的能量,也就是说,按照能效比的定义,热泵的能效 比是大于100%的。为了避免这种尴尬,定义系统所实现的制冷或制热量与输入功率的 比值为用长期性能系数(COP),以此评价热泵性能9。地源热泵的COPs通常在3到6之间, 取值依赖于系统与地连接设置、系统大小、地源特点、安装深度、当地气候等特点10,15。 2.2热量

9、输送系统热泵系统的供热系统将热量由热泵输送到整个空间。输送系统主要有两种:水-空 气传热与水一液体传热。水一空气传热系统将能量有地源转移到空气,由空气作为向空 间传热的传输介质,水一液体供热系统是由水和另外一种作为介质的液体进行换热。在北美,最常见的地源热泵系统是水一空气换热的,热泵的冷凝器加热空气线圈, 热空气从其中通过。热空气通过空调管道和通风口进入建筑12,16。水一液体加热系统俗称液体循环系统,在此系统中,能量由接地线圈从地源吸收, 接着被热泵加热并传递至水中,由水作为介质传递至建筑中。系统中的水通过地源热泵 系统冷凝器吸取热量。之后水由泵驱动环绕建筑转动,将热量由地面辐射供热、散热器

10、 或局部空气线圈等供热方式方式传递至空间中。这种系统相对于传统的强制对流系统需 要较低的温度。室内温度最高的空气在加热炉中被强迫向天花板上升,形成一个凉爽舒 适的居住空间。为了能使生活空间更加接近于期望的温度,进入空间气体的温度必须高 于空间本身温度。地板辐射供热的空间温度由地板到天花板都会很均匀,提供舒适的生 活温度需要的能量更低8,15,16。也有混合的动力系统,它结合了两种系统的供热方法,能够更加有效灵活的控制空 间温度。2.3接地系统空气源热泵使用周围环境作为热源,地源热泵使用地面作为热源。环境空气温度一 年四季以及每天的差异相对地面都更加大17。浅于0.8米的地面每天的温度会有波动,

11、 而更深的地方温度基本没有变化。地面温度随季节的变化比较明显,每天的变化比较小。 图2显示了地面温度在一年内加拿大渥太华的地表温度一年内的变化。随着深度的增加, 极端高温和极端低温开始大范围出现。地面以下的温度取决于很多因素,如太阳辐射、 积雪、气温、降水和地面的热性能。在加拿大每年持续观察深于十米的水温18。如图3 显示了渥太华不同深度随季节变化的温度变化情况。1m度深下面地环境空气温度范围地面温度 范围温度g图1加拿大渥太华,地面温度与深度的变化关系。Ref修正12。地源热泵利用了地面温度相对恒定,而且在冬天温度高于环境空气温度,在夏天低 于环境空气温度17的特性。地面温度仍然接近建筑环境

12、所期望的温度值。当内部和外部 的温度出现剧烈的变动时,空气源热泵如要提供相同程度的热量需要做更多的工作,这 会导致能效比的降低14。如果存温差大小出现变化,热泵系统不需要额外操作。接地系统或者接地环路热交换器由使流体在热泵系统和地面间传输的一束管路组 成。两种主要的回路设计方法是:双回路和单回路构造。冬 春 旻 秋 冬图3加拿大渥太华一年内不同时期地表温度变化。Ref修正12。2.3.1双回路构造双回路配置是最常见的系统配置,包含一个独立于热泵系统之外的接地系统。热泵 机组由地面获取的热量通过热交换器由水或水/防冻剂混合物转移到制冷剂。目前标准 管道规格是由聚乙烯或聚丙烯制造,内径19mm(3

13、/4英寸),作为中小型规模应用。有两 种双回路构造:闭环式和开放式。2.3.1.1闭环式系统闭环式系统的应用很常见,其中传热流体存在于循环线圈中,不与地面产生直接接 触;热量在地面和管道之间进行传递20。闭环系统分作四类:纵向、横向、螺旋等。垂直闭环系统由垂直方向的热交换管道组成。有一个深入地面的孔道,一般深度在 4575m,面积较大的建筑和工业使用可能会超过150m。建筑底部有一个U形连接器, 与两个管道连接接入孔中(图4)21。为了强化传热,管道和井壁之间充满了一种可用 泵吸收的浆状材料20,22。为了确保在多重多样的钻孔中流动顺利进行,需要采用歧管系 统,这种系统可以安置在系统内部或者循

14、环区域内部。垂直循环的一个优势是降低了安 装面积,使它更适用于土地面积有限的情况。另一个促进它使用的因素是它不会破坏周 围环境,因为钻孔相对挖沟来说影响较小17,23。此外,由于地下深处的温度一年四季接 近恒定,将管道定位在那里使地源热泵有着稳定的热性能并能降低整个回路的长度 20,23。使用这种系统最大的缺点是安装成本较高,因为钻孔比挖沟要昂贵的多。因此, 垂直闭环系统更多应用于大规模工程9。在地面面积充足的地方常见的是水平闭环系统,接地回路铺于沟中后埋入地下。根 据传热要求和土地情况,循环的安排方式可能有所差别。三种最常见的布局形式是基本 回路(图5)、连续回路(图6)、并行回路(图7)。

15、相对于连续式和并列式回路,基本回路布局通常需要占用较大的面积。连续回路降 低了对面积的要求而且简单易安装,所以也很常见9。连续回路和并列回路可以结合使 用,能够提高安装使用的灵活性。对于住宅设施来说,水平式比垂直式更加具有经济性,因为挖沟的成本远小于钻孔9。放置管道的沟深度一般不超过几米,但在会出现霜冻的地区,应当在冻土层以下。 随着深度降低,土壤和周围环境的相互作用增强,这将导致不同时间段和不同季节地面 温度出现变化,进而影响传热和系统性能。影响传热的其它因素包括雨水、降雪、植被 情况和阴影等9。这些因素都会导致水平系统比垂直系统需要安排更多的管路。水平系 统需要水/防冻液混合,作为寒冷气候

16、下的防冻保护9。图4垂直闭环热交换的地热热泵系统图5地源热泵水平闭环基本回路图6地源热泵水平闭环连续回路图7地源热泵水平闭环并列回路闭式螺旋循环的排布类似传统的水平循环,因为它也是水平的放置于浅沟内。但是, 螺旋循环的管道在沟内是圆形放置的,每个螺旋有管道直接通向热泵9,24。螺旋循环相 对于水平循环占用的面积较小,而且对沟的要求也更低,但对于固定的负载它需要更长 的管路。有的螺旋循环是将管道放置于垂直的窄沟中。这种垂直排布的主要优势是降低了对 水平面积的需求,也允许了很多种类挖沟设备的使用,有时有利于降低成本17。需要注 意的是,在挖沟花费构成地源热泵系统的主要成本时,螺旋循环能够降低初始成

17、本,在 材料花费更大时是不会提高经济性的21。螺旋循环相对于水平循环的其它缺点包括:更 低的传热量和更大的传热面积需求。由于螺旋循环管道长度增加,因此相对于其它水平 排布循环对泵有着更大的需求,这就降低了系统COP。闭环式池塘循环是闭式循环中最少见的热交换系统,基本上是淹没在水体中的螺旋 式闭环系统。盘绕的管道接入框架并用混凝土固定。框架通常在池塘底部以上2348cm, 以便管道周围流体形成对流21。循环管道位置一般要超过1.8m深,这对于保证水质环境 较低情况下,热质的稳定是必不可少的,并且能够确保在寒冷的季节管道周围水温不会 低于水的冰点。由于河流的水文情况不是很稳定,因此不适合应用此系统

18、,例如洪水或 碎石可能会使管道损坏9,24。池塘循环正在日益普及,部分原因是因为相比于其它系统需要更少的管道,而且有 着优越的传热特性,既不需要钻井也不需要挖沟。这个系统的主要缺点是需要一个足够 到的水体,而且对水体有着诸多限制,例如禁止划船。2.3.1.2开环式系统开放式热交换系统直接与地面进行热交换。这些系统都使用当地的地下水或地表水,如湖泊、池塘,作为直接传热媒介。水抽出后流过热泵热交换器,之后流回 地下或者用于灌溉9。目前,对废弃矿井中丰富水源的利用越来越广泛,因为充满热水 的废矿井可以使地源热泵技术的应用变得非常廉价。开放式系统更加倾向应用于大型热 泵系统。目前应用开环系统的最大的地

19、源热泵系统,为宾馆和办公楼提供10MW的热量 9。常见的开环式系统有三种:提取井、回灌井和地表水系统(图8)。水从一个达到地 下水位的生产井抽取,之后流经热泵热交换器,之后流回距离生产井有一段距离的地下, 这段距离足以让热量由地表传递到水中9。回灌可以排除;开放引流价格便宜,但需要 有丰富的水源供应热泵,有一个切实够大的容量以备长期使用14。热泵机组水流量一般 在 5.711.4L/m。图8开放式热泵换热系统及地源热泵生产井和注水开环系统的好处是水源温度基本保持不变。因为避免了地源热泵系统额外的与地连 接的热交换器,这就提高了COP18。由于不同的抽取方法,开环式系统可以承担很高的 载荷而且有

20、着很高的COPs,并能降低成本9。此外,开环式系统相对于闭环式垂直系统 需要的钻孔较少,有着简单的对地链接设计,并能降低运行成本。地源热泵需要抽取一 定量的水,这有可能受到当地水资源保护法则的限制。开环式系统的主要缺点是需要保 护水质,由于通常使用干净的地下水或地表水,开环式系统有时是被禁止的18。开环系 统和地源热泵系统之间的热交换器很容易受到腐蚀、污染和结垢,因此水应该处于中性 并且含有一些微量矿物质,例如铁24。如果水的化学性质不接近于中性,那么使用者的 维修次数可能会大大提高9。2.3.2 单回路配置单回路配置也被称作直接交换系统,热泵工作流体流经地面换热器,从而避免了接 地环路对热交

21、换器的需要。在供热过程中,接地环路基本上成为热泵蒸发器。单回路配 置还排除了接地环路循环泵,而不是依靠增大压缩机。这些措施都增加了地源热泵的 COP18。由于铜管优越的传热性能,经常应用于这些系统中以减少需要的排布面积。直 接换热的压力较大,需要良好的施工以避免因管道破裂对系统运行的影响。如果管道破 裂,整个系统可能需要挖出来进行维修。另一个缺点是涉及增加接地回路容纳制冷剂的 体积,这会增加系统成本9。尽管如此,由于具有较高的COPs,单回路配置系统的应用 越来越普及,而且一些国家(法国和奥地利)正在研究与蒸发器直接换热加上一些设施 直接冷凝来进行地板式供热9。2.4全球地位地源热泵的主要优势

22、是能够利用温度在5r-30r的土壤和地下水,而这个温度范围 在全世界各地的一定深度都会存在15。如,在2004年约30个使用地源热泵系统的国家, 领先的国家有美国、瑞典、德国、瑞士、加拿大和奥地利等。表1列出了有安装地源热 泵能力的几个国家。截止2004年全球安装的地源热泵热能力12万千瓦左右,每年的能源 使用需求在20亿千瓦时。该技术在法国、荷兰、中国、日本、俄罗斯、英国、挪威、丹 麦、爱尔兰、澳大利亚、波兰、罗马尼亚、土耳其、韩国、意大利、阿根廷、智利、伊 朗、英国和挪威15 逐渐兴起。自1994年以来的年均增长率一直在10%左右,目前大约是 170万的应用12。美国和欧洲的领导人,目前也

23、出于经济增长考虑发展该技术。表1 2004年热泵技术使用领先的国家国家热装机容量(MW)每年能源使用(GWh)地源热泵安装数量美国63006300600000瑞典20008000200000德国56084040000瑞士44066025000加拿大43530036000澳大利亚27537023000地源热泵技术的增长一直比其他可再生能源与常规能源技术慢一些。增长受限可以 归因于诸多因素,包括非标准化的系统设计、相对于其它系统较高的成本、人们对于 GHPs安装知识有限、政府政策的限制、经济规模和地区经济的限制6,18。尽管有这些问 题存在,但是却正在不断的被解决,提高了人们对该技术的接受程度15

24、。3 近期发展近期有很多关于地源热泵系统各个方面发展的报告。3.1辅助冷却组件由于压缩机和泵都不是100%的效率,它们运行过程中产生的热量直接被释放浪费 掉。压缩机和泵产生的废热可用于预热循环泵中的制冷剂。将制冷剂通入一个密封的外 壳,覆盖于泵和压缩机外面,由它们的电动机驱动能够实现将热量传递出去。预热能够 提高组件性能,提高整个地源热泵系统的COP,以及降低接地回路换热器的热负荷8。 3.2地面霜冻循环在多年冻土地区地源热泵的使用也逐步开始。建筑地基传热可能使永久冻土层融化 并危及结构的完整性。通过安装一个紧邻地基的地面循环,冻土融化的现象可能降低甚 至消失。从地基散发的热量被循环系统抽取,

25、以确保建筑不会大幅度影响当地地表温度。 抽取的热量用于补充建筑所需的热量,通常占建筑所需总热量的2050%。该系统不应 当使地面冻结的时间超过自然周期内冻结的时间,不应当扰乱当地的生态环境。热交换 回路应当时安全可靠的,以防出现故障影响到建筑的稳定性12。3.3单井回灌热交换系统单井回灌某些方面结合开放式和封闭式水热交换系统。它们本质上是地下水源热泵 系统,使用来自于半开放式循环安排的井水。在这样的系统中,一个垂直钻孔深入来自 深岩井底部温水中,用潜水泵抽取供给热泵机组。冷水被引止抽水井口附近。冷水深入 地下过程中吸取土壤中的热量,从而避免了单独建造一个注水井。单井回灌系统最近越 来越被人所接

26、受,因为在合适的地区它们有着良好的整体性能。该系统被安装在地表有 4560m石床的地点。国内作为饮用水源的井很容易被改造应用于该系统。该系统还可 以应用于充满水的矿井和隧道9。4 供热系统的分析比较在以下供暖系统间进行比较:地源热泵、空气源热泵、电动基板、热水器、天然气 炉(中、高效率)。加拿大三个省份(阿尔伯塔省、安大略省和新斯科舍省)进行效率、 成本和排放量评估。结果列于表2、3。在欧洲的发展也进行了探讨。4.1效率地源热泵具有高效率,反映在他们的COPs。典型的等效于COP的系统有以下这些: 地源热泵:3-5、空气源热泵:2.3-3.5、踢脚线电热水器:1、中间效率天然气炉:0.78-0

27、.82、 高效率天然气炉:0.88-0.97。4.2经济性相比于传统供热系统,地源热泵系统初始成本大幅提高,主要因为地源热泵机组和 接地装置(包括钻井和挖沟的成本)等资金的投入。但是,地源热泵能够高效的降低运 行成本。4.2.1在加拿大的经济性趋势对于在加拿大的情况分析是,假设所有条件相同的情况下初始投资成本的评估。在 天然气特定的省份,每年供热成本为基础的电力成本。假设20年的寿命和平均COP 4的 地热系统。典型地热泵有20-25年的保证,但存在有超过30年运行的系统。假定系统安 装不需要新的管道安装。表2总结了评估成本。结果表明地热热泵的经济可行性很大程度上取决于位置。电 力、天然气的价

28、格和其他取暖燃料价格具有区域性。在阿尔伯塔省和新斯科舍地源热泵 是最经济竞争力的选择。在安大略省的空气源热泵有决心20年后极大降低成本。艾伯塔 省和新斯科舍省比安大略省有较高的电力价格,直接影响到了这一调查结果。高电价促 进了空气源热泵和电动地板的推广使用。研究还发现,当天然气的价格较低时,使用天 然气和地源热泵供暖花费之间的差距缩小。当天然气或其它燃料价格较低时,使用地源 热泵可能并非最经济的选择18。在特定的地区地源热泵空调系统表现出渐增的经济优势,因为地源热泵在反向工作 时使它们能够从建筑中吸收能量传递至地面。而传统的供热系统需要一个单独的空间制 冷空调,地源热泵系统避免这种初始成本24

29、。地源热泵系统的投资回收期通常是6至20 年之间,根据资金成本、能源价格和能源价格不断上涨J18。另一个没在研究中量化的优 势是,设备本身的价值。GHPs倾向于增加属性值,能够实现建设和土地投资的高回报, 并促进更理想的抵押贷款评估18。请注意,地源热泵系统是最具成本效益的,如果安装 在建筑施工中,或者当一个老的供暖系统需要更换时。购买和安装地源热泵,作为一个 工作系统的选择,很少是值得从能源和经济的角度考虑的14。4.2.2在欧洲的经济性趋势表4说明了欧盟各国家的天然气和电力价格。该分析假设所有国家具有稳定的热负 荷且系统有20年的寿命。比较空气源热泵、电加热器、天然气炉(中、高效率)的成本

30、 (包括初始成本)。为简单起见,初始成本假设为与加拿大的比较中使用的相同。欧洲的天然气和电力成本较高,但是高于加拿大的投资花费看起来是相对的。在大 多数欧盟国家看来,地源热泵系统想对于传统供热方式更具经济性,而安装成本的增高 相对于20年的使用寿命来说是微不足道的。在德国、爱尔兰、卢森堡、西班牙和英国 发现,使用高效率的天然气炉更加经济,这是由于电力的价格要高于可燃气体。表2在几个地点的各种供暖系统的经济参数比较供热系统投资成本($)阿尔伯塔安大略省新斯科舍省年花费($)现值($)年花费($)现值($)年花费($)现值($)地源热泵9000601210203281556064927230空气源

31、热泵4900813211604441378087727940电热板1550225746690123126170243250190天然气炉a1500127627020234448380188544750天然气炉b1900110924080104922880165340460单位为2009年加元。现值指一个20年期间。a代表中间效率。b代表高效率。表3在几个地点各种供热系统的二氧化碳排放量比较供热系统每年燃料使用(kWh)阿尔伯塔安大略省新斯科舍省排放强度排量排放强度排量排放强度排量地源热泵60801.1268260.18811431.046346空气源热泵82141.1292220.188154

32、41.048573电热板222801.12250150.18841881.0423255天然气炉a284750.19054100.19054100.1905410天然气炉b246550.19046840.19046840.1904684排放强度单位为(kgCO2/kWh)。排量单位为(kg)。表4欧盟几个国家天然气、电力价格,以及与电力相关的二氧化碳排放量27,28。国家天然气价电力价格排放强国家天然气价电力价格排放强格($/kWh)($/kWh)度格仰/kWh)($/kWh)度澳洲0.080.270.239拉脱维亚0.050.150.443比利时0.080.280.311立陶宛0.060.1

33、70.307赛福斯N/A0.270.974卢森堡0.070.250.307捷克0.070.190.922荷兰0.100.250.419丹麦0.150.390.680挪威N/AN/A0.015爱沙尼0.050.141.015波兰0.070.201.108芬兰N/A0.200.403葡萄牙0.090.240.630法国0.080.180.108斯洛伐克0.060.230.382德国0.080.350.626斯洛尼亚0.090.200.392希腊N/A0.170.882西班牙0.070.260.493匈牙利0.070.220.695瑞典0.120.260.076爱尔兰0.020.270.706瑞士N

34、/AN/A0.041意大利0.100.270.565英国0.060.210.558欧盟0.080.230.486该研究提供了一个在欧洲国家地源热泵实施的一般概述。不同的国家之间,热负荷 有所差别,这项研究中引入了不同的表达词汇。在对供热要求较低的地区引入地源热泵 可能不够经济,因为地源热泵机组的初始投入是较大的。此外,在气候较温暖的地区, 通过降低设备大小能使安装地源热泵的初始成本降低。地源热泵设备的细节问题,要在 深入研究分析欧洲特定国家的气候情况下决定。4.3二氧化碳排放该评估比较了不同供暖系统的二氧化碳排放量。尽管其它污染物的排放也是不可忽 视的,但此处集中考虑二氧化碳的排放,因为它是最

35、常见的温室气体而且被认为是影响 气候变化的重要因素18。地源热泵不直接排放二氧化碳,排放源于生产电力的发电厂。当电力生产过程中二氧化碳的排放较高时,地源热泵系统排放的二氧化碳也相应的增 高。地源热泵是否环保取决于地源热泵所使用的电力生产过程中产生的二氧化碳,它的 COP和其它供暖系统的效率25。4.3.1加拿大二氧化碳排放趋势加拿大地区二氧化碳排放情况的确定,考虑了设备消耗的电量或者天然气的量和燃 料排放强度(每kWh电力生产所产生的二氧化碳)。再次审视前面提到的三个省。假 设天然气成分是相同的阿尔伯塔省,安大略省和新斯科舍省,每单位气体消耗时的排放 量是固定的。每个省的平均排放强度使用碳监测

36、行动(CARMA)在线数据库。不同省份,各种供暖系统的二氧化碳气体排放量列于表3。由于安大略省具有新一 代低排放设备,超过50%的电力生产来源于核能,其余部分来源于火力发电厂和水力发 电厂,应用地源热泵有利于环保。在阿尔伯塔省和新斯科舍省超过80%的电力生产来自 化石燃料,包括煤、天然气发电厂16。相对高效率(95%)的天然气锅炉,当生产每kWh 电力的排放强度小于0.76kg时,使用地源热泵能够降低二氧化碳排放18。一般情况下, 如果地源热泵使用的电力来源于环保的生产方式,地源热泵相对于传统的电加热设备和 天然气燃烧设备能够最大程度的降低排放。在电力生产时排放的二氧化碳较多的地区, 使用度源

37、热泵系统所能带来的减排有限。当应用可再生能源进行发电时,地源热泵所产 生的二氧化碳排放仅仅来源于运行过程,排量很小甚至接近于零。总体而言,地源热泵 通常提供最大(或近乎最大)的排放量的减少。4.3.2欧洲二氧化碳排放趋势表4列出了欧盟不同国家电力生产过程中的二氧化碳排放强度。使用 与电力生产相关设施的碳排放门槛,由Dowlatabadi和Hanova确定18为0.76kg/kWh, 由表可以看出,所列出的大多数国家使用地源热泵取代传统供热系统都能够取得降低排 放的效果。在一个国家内使用地源热泵机组能显着减少国家整体的二氧化碳排放量。例 如,耦合地面地源热泵连接当前英国电网,考虑到英国电网目前的发电组合,使用地源 热泵系统相对于传统供热系统能够降低超过50%的二氧化碳排放15。5 结论地源热泵是一种高效的供热技术,能够减少二氧化碳的排放量,潜在的避免了化石 燃料的燃烧而且具备一定的经济性优势。对于加热特定的建筑空间,相对于其它供热方 式,地源热泵系统显著的减少了能源的使用。随着环境的变化,地源热泵系统可以进行 许多变化,而且在世界大部分地区适合使用地源热泵。在选择供热模式时,考虑地源热 泵系统是非常重要的,如效率、排放量、经济性等方面。参考文献(见原文)附件2:外文原文

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 生活休闲 > 在线阅读


备案号:宁ICP备20000045号-2

经营许可证:宁B2-20210002

宁公网安备 64010402000987号