《单片机定时器及应用.ppt》由会员分享,可在线阅读,更多相关《单片机定时器及应用.ppt(64页珍藏版)》请在三一办公上搜索。
1、第6章 定时器/计数器及其应用,2,定时器/计数器及其应用,定时器/计数器的应用场合:定时或延时控制、对外部事件的检测、计数等;MCS-51系列8031、8051单片机有两个16位定时器/计数器(即T0和T1);8032、8052单片机有3个16位定时器/计数器(即T0、T1和T2);,3,定时器/计数器及其应用,所谓计数器就是对外部输入脉冲的计数;所谓定时器也是对脉冲进行计数完成的,计数的是MCS-51内部产生的标准脉冲,通过计数脉冲个数实现定时。所以,定时器和计数器本质上是一致的,在以后的叙述中将定时器/计数器笼统称为定时器。,4,5,第6章 定时器/计数器及其应用,6.1 定时器的结构及
2、工作原理6.2 定时器的TMOD和TCON寄存器6.3 定时器的工作方式6.3.1 方式06.3.2 方式16.3.3 方式26.3.4 方式36.4 定时器的编程和应用,6,第6章 定时器/计数器及其应用,6.1 定时器的结构及工作原理,7,6.1 定时器的结构及工作原理,组成:两个16位的定时器T0和T1,以及他们的工作方式寄存器TMOD和控制寄存器TCON等组成。内部通过总线与CPU相连。定时器T0和T1各由两个8位特殊功能寄存器TH0、TL0、TH1、TL1构成。工作方式寄存器TMOD:用于设置定时器的工作模式和工作方式;控制寄存器TCON:用于启动和停止定时器的计数,并控制定时器的状
3、态;单片机复位时,两个寄存器的所有位都被清0。,8051定时器内部结构框图,8,6.1 定时器的结构及工作原理,两种工作模式:(1)计数器工作模式就是对外部事件进行计数。计数脉冲来自相应的外部输入引脚T0(P3.4)或T1(P3.5)。当输入信号发生由1至0的负跳变(下降沿)时,计数器(TH0,TL0或TH1,TL1)的值增1。计数的最高频率一般为振荡频率的1/24。Why?(2)定时器工作模式也是通过计数实现的。计数脉冲来自内部时钟脉冲,每个机器周期计数值增1,每个机器周期=12个振荡周期,因此计数频率为振荡频率的1/12。所以定时时间=计数值机器周期。4种工作方式(方式0-方式3)。,9,
4、振荡周期:是振荡脉冲的周期,也成为“拍”,用P表示。就是晶体振荡器的周期,或外部振荡脉冲的周期。是MCS-51单片机的最小时序单位。,时钟周期:是振荡源信号经二分频后形成的时钟脉冲信号,用S表示。每个时钟周期分成P1、P2两个节拍,又被称为一个状态。是MCS-51单片机的最基本的时序单位。,机器周期:通常将完成一个基本操作所需的时间称为机器周期,由6个状态(12拍)组成,所以一个机器周期可以依次表示为S1P1、S2P2S6P1、S5P2。通常算术逻辑操作发生在节拍P1期间,而内部寄存器到寄存器的传送发生在节拍P2期间。,指令周期:是指CPU执行一条指令所需要的时间。是MCS-51单片机的最大的
5、时序单位,由若干个振荡周期组成。一个指令周期通常含有14个机器周期,MCS-51典型的指令周期为一个机器周期。,振荡周期、时钟周期、机器周期和指令周期,10,6.1 定时器的结构及工作原理,在每个机器周期的S5P2期间采样检测引脚输入电平。若前一个机器周期采样值为“1”,后一个机器周期采样值为“0”,则计数器加1。新的计数值在检测到输入引脚电平发生“1”到“0”的负跳变(下降沿)后,于下一个机器周期的S3P1期间装入计数器中。由于CPU需要两个机器周期来识别一个“1”到“0”的跳变信号,所以最高的计数频率为振荡周期的1/24。,11,6.1 定时器的结构及工作原理,定时/计数器对输入信号的要求
6、外部计数脉冲的最高频率为系统振荡器频率的1/24,例如选用12MHz频率的晶体,则可输入600KHz的外部脉冲。输入信号的高、低电平至少要分别保持一个机器周期。如图所示,图中Tcy为机器周期。,12,可编程定时器的工作方式、启动、停止、溢出标志、计数器等都是可编程的通过设置寄存器TMOD,TCON,TH0,TL0,TH1和TL1 实现。当设置了定时器的工作方式并启动定时器工作后,定时器就按被设定好的工作方式独立工作,不再占用CPU,只有在计数器计满溢出时才向CPU申请中断,占用CPU。由此可见,定时器是单片机中工作效率高且应用灵活的部件。,6.1 定时器的结构及工作原理,13,第6章 定时器/
7、计数器及其应用,6.2 定时器的TMOD和TCON寄存器,14,6.2 定时器的TMOD和TCON寄存器,8051单片机定时器主要有几个特殊功能寄存器组成:TMOD,TCON,TH0,TL0,TH1,TL1。TMOD:设置定时器的工作方式;TCON:控制定时器的启动和停止;TH0和TL0:存放定时器T0的初值或计数结果;TH0存放高8位,TL0 存放低8位;TH1和TL1:存放定时器T1的初值或计数结果;TH1存放高8位,TL1 存放低8位;,15,6.2.1 工作方式控制寄存器TMOD,8位分为两组,高4位控制T1,低4位控制T0。(1)GATE 门控位 0:以TRX(X=0,1)来启动定时
8、器/计数器运行。1:用外中断引脚(INT0*或INT1*)上的高电平和TRX来启动定时器/计数器运行。,(2)M1、M0 工作方式选择位 M1 M0 工 作 方 式 0 0 方式0,13位定时器/计数器。0 1方式1,16位定时器/计数器。1 0 方式2,8位常数自动重新装载 1 1 方式3,仅适用于T0,T0分成两个8位计数器,T1停止计数。,(3)C/T*计数器模式和定时器模式选择位0:定时器模式。1:计数器模式。,(4)TMOD无位地址,不能位寻址。(6)复位时,TMOD所有位均为“0”。,16,低4位与外部中断有关,后面介绍。高4位的功能如下:(1)TF1、TF0 计数溢出标志位 定时
9、器T0或T1计数溢出时,由硬件自动将此位置“1”;TFx可以由程序查询,也是定时中断的请求源;(2)TR1、TR0 计数运行控制位 TRx=1:启动定时器/计数器工作 TRx=0:停止定时器/计数器工作,6.2.2 控制寄存器TCON,17,18,第6章 定时器/计数器及其应用,6.3 定时器的工作方式,19,MCS-51的定时器T0有4种工作方式:即:方式0,方式1,方式2,方式3。MCS-51的定时器T1有3种工作方式:即:方式0,方式1,方式2。,6.3 定时器的工作方式,20,6.2.1 方式0 M1、M0设置为00,为13位计数器,以T1为例,其框图如下:,6.3 定时器的工作方式方
10、式0,计数脉冲输入,加1计数器,21,6.3 定时器的工作方式方式0,在这种方式下,16位寄存器TH1和TL1只用13位,由TH1的8位和TL1的低6位组成。TL1的高3位不定。当TL1的低6位计数溢出时,向TH1进位。而TH1计数溢出时,则向中断标志位TF1进位(即硬件将TF1置1),并请求中断。可通过查询TF1是否置“1”或考察中断是否发生来判定定时器T1的操作完成与否。,22,6.2.3 定时/计数器的初始化,初值计算:设计数器的最大值为M,则置入的初值X为:计数方式:X=M-计数值 定时方式:由(M-X)T=定时值,得X=M-定时值/T T为计数周期,是单片机的机器周期。(模式0:M为
11、213,模式1:M为216,模式2和3:M为28),例如:机器周期为1s 时,若工作在模式0,则最大定时值为:2131s=8.192ms 若工作在模式1,则最大定时值为:2161s=66.636ms,23,6.3 定时器的工作方式方式0,当C/T=0时,为定时工作模式,开关接到振荡器的12分频器输出上,计数器对机器周期脉冲计数。其定时时间为:(213-初值)振荡周期12例如:若晶振频率为12MHz,则最长的定时时间为(213-0)(1/12)12us=8.191ms当C/T=1时,为计数工作模式,开关与外部引脚T1(P3.5)接通,计数器对来自外部引脚的输入脉冲计数。当外部信号发生负跳变时计数
12、器加1。,24,6.3 定时器的工作方式方式0,GATE控制定时器Tx(T1或T0)的条件:(1)当GATE=0时,“或门”输出恒为1,“与门”的输出信号K由TRx决定(即此时K=TRx),定时器不受INTx输入电平的影响,由TRx直接控制定时器的启动和停止。TRx=1;计数启动;TRx=0;计数停止;(2)当GATE=1时,“与门”的输出信号K由INTx输入电平和TRx位的状态一起决定(即此时K=TRxINTx),当且仅当TRx=1且INTx=1(高电平)时,计数启动;否则,计数停止。,返回,25,6.3.2 方式1 M1、M0=01,为16位的计数器,除位数外,其他与方式0相同。其定时时间
13、为:(216-初值)振荡周期12例如:若晶振频率为12MHz,则最长的定时时间为(216-0)(1/12)12us=66.636ms,6.3 定时器的工作方式方式1,26,6.3.3 方式2 M1、M0=10,为自动恢复初值的8位计数器,等效框图如下:TLx作为8位计数器,THx作为重置初值的缓冲器。,6.3 定时器的工作方式方式2,THx作为常数缓冲器,当TLx计数溢出时,在置“1”溢出标志TFx的同时,还自动的将THx中的初值送至TLx,使TLx从初值开始重新计数。定时器/计数器的方式2工作过程如图(x=0,1)。,27,优点:方式0和方式1用于循环重复定时或计数时,在每次计数器挤满溢出后
14、,计数器复0。若要进行新一轮的计数,就得重新装入计数初值。这样一来不仅造成编程麻烦,而且影响定时精度。而方式2具有初值自动装入的功能,避免了这个缺点,可实现精确的定时。缺点:只有8位计数器,定时时间短、计数范围小。其定时时间为:(28-初值)振荡周期12若晶振频率为12MHz,则最长的定时时间为(28-0)(1/12)12us=0.266ms,6.3 定时器的工作方式方式2,方式2工作过程图(x=0,1)。,28,6.3.4 方式3 只适用于定时器/计数器T0。T1不能工作在方式3。如果将T1置为方式3,则相当于TR1=0,停止计数(此时T1可用来作串行口波特率产生器)。1.工作方式3下的T0
15、 T0在方式3时被拆成两个独立的8位计数器:TH0和TL0。8位计数器TL0使用T0的状态控制位C/T*、GATE、TR0、INT0,它既可以工作在定时方式,也可以工作在计数方式。8位定时器TH0被固定为一个8位定时器(不能作外部计数模式),并使用定时器T1的状态控制位TR1,同时占用定时器T1的中断请求源TF1。此时,定时器TH0的启动或停止只受TR1控制。TR1=1时,启动TH0的计数;TR1=0时,停止TH0的计数,6.3 定时器的工作方式方式3,29,6.3 定时器的工作方式,各引脚与T0的逻辑关系如图所示:,30,2.T0工作在方式3下T1的各种工作方式 注意:当T0处于方式3时,T
16、1仍可设置为方式0、方式1和方式2。当时由于TR1、TF1和T1的中断源都已被定时器T0(中的TH0)占用,所以定时器T1 仅有控制位C/T来决定其工作在定时方式或计数方式。当计数器计满溢出时,不能置位“TF1”,而只能将输出送往串口。所以,此时定时器T1一般用作串口的波特率发生器,或不需要中断的场合。(1)T1工作在方式0,6.3 定时器的工作方式,31,(2)T1工作在方式1,(3)T1工作在方式2,6.3 定时器的工作方式,32,第6章 定时器/计数器及其应用,6.4 定时器的编程和应用,33,6.4 定时器的编程和应用,编程说明MCS-51单片机的定时器是可编程的,但在进行定时或计数之
17、前要对程序进行初始化,具体步骤如下:(1)确定工作方式字:对TMOD寄存器正确赋值;(2)确定定时初值:计算初值,直接将初值写入寄存器的TH0、TL0或TH1、TL1;初值计算:设计数器的最大值为M,则置入的初值X为:计数方式:X=M-计数值 定时方式:由(M-X)T=定时值,得X=M-定时值/T T为计数周期,是单片机的机器周期。(模式0 M为213,模式1 M为216,模式2和3 M为28)(3)根据需要,对IE置初值,开放定时器中断;(4)启动定时/计数器,对TCON寄存器中的TR0或TR1置位,置位以后,计数器即按规定的工作模式和初值进行计数或开始定时。,34,6.4 定时器的编程和应
18、用,例6-1 要在P1.0上输出一个周期为2ms的方波,假设系统振荡频率采用12MHz。利用T0方式0产生1ms的定时方波的周期用T0来确定,让T0每隔1ms计数溢出1次,CPU对P1.0取反。,即要使P1.0每隔1ms取反一次。,35,6.4 定时器的编程和应用,第一步:确定工作方式字 方式0(13位)最长可定时 8.192ms;方式1(16位)最长可定时 66.636ms;方式2(8位)最长可定时 266s。T0为方式0,M1M0=00 定时工作状态,C/T=0GATE=0,不受INT0控制,T1不用全部取“0”值。故TMOD=00H,36,6.4 定时器的编程和应用,第二步:计算1ms定
19、时的初值X 设初值为X,则有:(213-X)1210-6 1/12=110-3可求得:X=8192-1000=7192X化为16进制,即X=1C18H=1,1100,000 1,1000B。所以,T0的初值为:TH0=E0H TL0=18H,37,第三步:程序设计 采用T0中断的方式来控制P1.0的输出,同时要重新装入初值。,6.4 定时器的编程和应用,38,参考程序:ORG 0000HLJMPMAINORG000BHLJMPTIMERORG 0100HMAIN:SETBEASETB ET0MOV TMOD,#00H;设置T0为方式0MOVTL0,#18H;送计数初值 MOVTH0,#0E0H
20、;送计数初值SETB TR0;启动T0SJMP$TIMER:MOV TL0,#18H;T0重置初值 MOV TH0,#0E0H;T0重置初值 CPL P1.0;P1.0的状态取反RETIEND,39,例6-2 将例6-1中的输出方波周期改为1秒。分析:周期为1s的方波要求600ms的定时。(1)T0工作方式的确定因定时时间较长,采用哪一种工作方式?由各种工作方式的特性,可计算出:方式0(13位)最长可定时 8.192ms;方式1(16位)最长可定时 66.636ms;方式2(8位)最长可定时 266s。所以采用定时器定时加软件计数的方法来实现延长定时。选方式1,定时60ms,软件计数10次。6
21、0ms 10=600ms。所以,TMOD=01H,6.4 定时器的编程和应用,以上各方式都不满足要求,40,(2)计算计数初值因为:(216-X)1210-6 1/12=6010-3所以:X=16636=3CB0H因此:TH0=3CH,TL0=B0H(3)10次计数的实现设计一个软件计数器,初始值设为10。每隔60ms定时时间到,产生定时中断,则软件计数器减1。这样减到0时就获得了600ms的定时。,6.4 定时器的编程和应用,41,(4)程序设计(参考程序)MAIN:SETBEASETB ET0MOV TMOD,#01H;设T0工作在方式1MOV TL0,#0B0H;给T0设初值MOV TH
22、0,#3CHMOVR7,#10;软件计数器初值SETB TR0;启动T0SJMP$TIMER:DJNZ R7,EXIT;R7不等于0,则不对P1.0取反CPLP1.0MOVR7,#10;重置软件计数器初值EXIT:MOV TL0,#0B0H;T0中断子程序,重装初值MOV TH0,#3CH RETIEND,42,以上的定时程序中,程序都要重置计时器初值,这样从定时器溢出发出溢出标志,到重装完定时器初值,在开始计数,之间总会有一段时间间隔,使定时时间增加了若干微秒,造成定时不够精确。为了减小这种定时误差,单片机中设置了工作方式2(自动重装初值),则可避免上述因素,省去程序中重装初值的指令,实现精
23、确定时。但是工作方式2的缺点是只有8位计数器,定时时间受到很大限制。,6.4 定时器的编程和应用,43,例6-3 利用T0方式2产生250us的定时,在P1.0引脚上输出周期为500us的方波(要求精确定时)。(设系统振荡为12MHz)(1)工作方式选择实现精确定时,采用方式2。对于12MHz晶振,方式2的最大计数时间为28=255us,所以可实现250us的精确定时。故,设置TMOD=02H。(2)计算初值设初值为X:则(28-X)1210-61/12=25010-6 X=28-250=5=05H(3)程序设计采用T0中断来控制P1.0的输出。,6.4 定时器的编程和应用,44,(4)参考程
24、序MAIN:SETBEASETB ET0MOVTMOD,#02H;置T0方式2MOVTH0,#05H;送计数初值MOVTL0,#05HSETB TR0;启动T0SJMP$TIMER:CPLP1.0;输出取反RETI;重复循环END,6.4 定时器的编程和应用,45,GATE门可使定时器Tx(T0或T1)的启动计数受INTx*的控制,可测量引脚INTx*(P3.2或P3.3)上正脉冲的宽度(机器周期数)。以T1为例:,门控制位GATE的应用测量脉冲宽度,回顾,当GATE=1时,K=TRxINTx,K,46,例6-4 利用T1门控位GATE测试INT1*(P3.3)引脚上出现的正脉冲的宽度。分析:
25、根据设计要求,将T1设定为定时工作模式、方式1、GATE=1;当TR1=1时,一旦INT1*(P3.3)引脚上出现高电平就开始计数,直到出现低电平为止。然后读取TH1、TL1中的计数值,分别送到寄存器A和B中。由于T1工作在定时方式,计数器计数的是机器周期的脉冲数;将脉冲数转化成时间,就可得到正脉冲的宽度。,门控制位GATE的应用测量脉冲宽度,47,ORG 0100HMAIN:MOV TMOD,#90H;T1为方式1定时控制字MOV TL1,#00H;计数器初值为0MOV TH1,#00HLOOP:JB P3.3,LOOP;等待INT1*低SETB TR1;如INT1*为低,启动T1LOOP1
26、:JNB P3.3,LOOP1;等待INT1*升高,开始计数LOOP2:JB P3.3,LOOP2;等待INT1*降低,停止计数CLR TR1;停止T1计数MOV A,TL1;T1计数值的低8位送AMOV B,TH1;T1计数值的高8位送B由于定时器最长为16位计数器,因此被测脉冲高电平的宽度不能超过66636个机器周期。,参考程序:,48,例6-6 当T0(P3.4)引脚上发生负跳变时,从P1.0引脚上输出一个周期为1ms的方波,如图所示。(系统振荡为6MHz)两个计数器同时使用,6.4 定时器的编程和应用,49,(1)工作方式选择T0为方式1计数,初值 0FFFFH,即外部计数输入端T0(
27、P3.4)发生一次负跳变时,T0加1且溢出,溢出标志TF0置“1”,发中断请求。在进入T0中断程序后,把F0标志置“1”,说明T0引脚上已接收了负跳变信号。T1定义为方式2定时。在T0引脚产生一次负跳变后,启动T1每600s产生一次中断,在中断服务程序中对P1.0求反,使P1.0产生周期1ms的方波。TMOD=0010,0101=26H(2)计算T1初值设T1的初值为X:则(28-X)210-6=610-4 X=28-260=6=06H,6.4 定时器的编程和应用,50,ORG 100HMAIN:SETB EASETB ET0 SETB ET1MOV TMOD,#26H;初始化,T1为方式2定
28、时,T0为方 式1计数MOV TL0,#0FFH;T0置初值 MOV TH0,#0FFHSETB TR0;启动T0MOV TL1,#06H;T1置初值MOV TH1,#06HSJMP$TIMER0:CPLP1.0;P1.0取反SETB TR1;启动T1RETITIME1:CPLP1.0;P1.0取反RETIEND,(3)程序设计,51,本 章 结 束!,52,6.4 定时器的编程和应用,T0 方式3时,TL0和TH0被分成两个独立的8位定时器/计数器。其中,TL0:8位定时器/计数器;TH0:8位定时器。当T1作串行口波特率发生器时,T0才设置为方式3。,53,6.4 定时器的编程和应用,例6
29、-6 假设某MCS-51应用系统的两个外中断源已被占用,设置T1工作在方式2,作波特率发生器用。现要求增加一个外部中断源,并控制P1.0引脚输出一个6kHz的方波。设系统振荡为6MHz。,54,(1)选择工作方式TL0为方式3计数,把T0引脚(P3.4)作附加的外中断输入端,TL0初值设为0FFH,当检测到T0引脚电平出现负跳变时,TL0溢出,申请中断,这相当于跳沿触发的外部中断源。TH0为8位方式3定时,控制P1.0输出6kHz的方波信号。如图所示。,6.4.3 方式3的应用,55,(2)初值计算TL0的初值设为0FFH。6kHz的方波的周期为200s,TH0的定时时间为100s。TH0初值
30、X计算如下:(28-X)210-6=110-4X=28-100=166=9CH(3)程序设计ORG 0000HLJMP MAINORG 000BH;T0中断入口LJMP TL0INT;跳T0中断服务程序ORG 001BH;在T1方式3时,TH0占用T1的中断LJMP TH0INT;跳TH0中断服务程序,6.4.3 方式3的应用,56,ORG 0100HMAIN:MOV TMOD,#27H;T0方式3计数,T1方式2定时MOV TL0,#0FFH;置TL0初值MOV TH0,#9CH;置TH0初值MOV TL1,#dataL;data为波特率常数MOV TH1,#dataHMOV TCON,#6
31、6H;启动T0、T1,设置外部中断为跳沿触发MOV IE,#9FH;开中断TL0INT:MOV TL0,#0FFH;TL0中断服务程序,TL0重新装入初值 中断处理 TH0INT:MOV TH0,#9CH;TH0中断服务程序,TH0重新装入初值CPL P1.0;P1.0位取反输出RETI,6.4.3 方式3的应用,57,6.2.3 定时/计数器的初始化,MCS-51单片机的定时器/计数器是可编程的,但在进行定时或计数之前要对程序进行初始化,具体步骤如下:(1)对TMOD赋值,以确定定时器的工作模式;(2)置定时/计数器初值,直接将初值写入寄存器的TH0、TL0或TH1、TL1;(3)根据需要,
32、对IE置初值,开放定时器中断;(4)对TCON寄存器中的TR0或TR1置位,启动定时/计数器,置位以后,计数器即按规定的工作模式和初值进行计数或开始定时。,58,1.实时时钟实现的基本思想 如何获得1秒的定时,可把定时时间定为100ms,采用中断方式进行溢出次数的累计,计满10次,即得到秒计时。片内RAM中规定3个单元作为秒、分、时单元,具体安排如下:42H:“秒”单元;41H:“分”单元;40H:“时”单元从秒到分,从分到时是通过软件累加并进行比较的方法来实现的。,6.4.6 实时时钟的设计,59,2.程序设计(1)主程序的设计流程如图所示。,6.4.6 实时时钟的设计,60,(2)中断服务
33、程序的设计中断服务程序的主要功能是实现秒、分、时的计时处理。参考程序略。,6.4.6 实时时钟的设计,61,在读取运行中的定时器/计数器时,需注意:若恰好出现TLX溢出向THX进位的情况,则读得的(TLX)值就完全不对。同样,先读(THX)再读(TLX)也可能出错。方法:先读(THX),后读(TLX),再读(THX)。若两次读得(THX)相同,则读的内容正确。若前后两次读的(THX)有变化,则再重复上述过程,这次重复读得的内容就应是正确的。下面是有关的程序,读得的(TH0)和(TL0)放置在R1和R0内。,6.4.6 运行中读定时器/计数器,62,RDTIME:MOV A,TH0;读(TH0)
34、MOV R0,TL0;读(TL0)CJNE A,TH0,RDTIME;比较2次读得的(TH0);不相等则重复读MOV R1,A;(TH0)送入R1中 RET,6.4.6 运行中读定时器/计数器,63,6.1 定时器的结构及工作原理,当控制信号 定时器工作在定时方式;加1计数器对脉冲f进行计数,每来一个脉冲,计数器加1,直到计时器计满溢出;因为,即一个计数脉冲的周期就是一个机器周期;计数器计数的是机器周期脉冲个数。从而实现定时。当控制信号 定时器工作在计数方式;加1计数器对来自输入引脚T0(P3.4)和T1(P3.5)的外信号脉冲进行计数,每来一个脉冲,计数器加1,直到计时器计满溢出;,64,控制信号K可以控制计数器的“启动”和“停止”,,