《《光电信号处理》PPT课件.ppt》由会员分享,可在线阅读,更多相关《《光电信号处理》PPT课件.ppt(49页珍藏版)》请在三一办公上搜索。
1、第四章 光电信号处理,4.1光辐射探测过程的噪声4.2光电探测器的偏置电路4.3光电探测器的放大电路4.4微弱信号检测4.5锁定放大器4.6取样积分器4.7光子计数器,1.低噪声电子设计的适用范围,前述降低噪声方法使用的前提是要求在电信号处理的输入端有足够大的信噪比,处理的结果是使信噪比不至于变坏。如果在信号处理系统的输入端,信噪比已很糟糕,甚至信号深埋于噪声之中,这时要想将信号检测出来,仅用低噪声电子设计的方法就不行了。必须根据信号和噪声的不同特点,采用相应的方法将信号与噪声分离。,2.微弱信号检测的途径,根据噪声的特性和不同信号的特点,微弱信号检测的途径一般有三条:一是降低传感器与放大器的
2、固有噪声,尽量提高其信噪比;二是研制适合弱检原理并能满足特殊需要的器件;三是研究并采用各种弱信号检测技术,通过各种手段提取信号。这三者缺一不可。,信噪比改善(SNIR),在介绍微弱信号检测的一般方法之前,先介绍信噪比改善(SNIR)的定义:信噪比改善(SNIR)是衡量弱检仪器的一项重要性能指标。信噪比改善的定义为,从数学表达式看,SNIR似乎是噪声系数NF的倒数,但实质上两者是有差别的。噪声系数是对窄带噪声而言的,并且得到结论NF1。这个结论的产生是由于假设了输入噪声的带宽小于或等于放大系统的带宽;实际上输入噪声的带宽要大于放大系统的带宽,因而噪声系数NF便有可能要小于1,同时又考虑到实际的情
3、况,因此而给出信噪比改善的概念。,信噪比改善(SNIR),Eni是位于信号源处放大系统的等效输入噪声,假定Eni是白噪声,其功率谱密度为常数:fin为输入噪声的带宽。,白噪声SNIR表示式:,那么 为放大系统的增益。得:是放大系统对信号的功率增益,我们可以取中频区最大值,即所以:,而 即系统的等效噪声带宽。故可得:放大系统的信噪比改善等于输入噪声的带宽Bi与系统的等效噪声带宽Bn之比。因此,减小系统的等效噪声带宽,可以提高信噪比改善。,例:有一个信号掩埋在噪声中,若输入信噪比:那么只要检测放大系统的等效噪声带宽做得很小,使BnBi,就可能将此信号检测出来。例如,若 而 Bi=100KHz,Bn
4、=1KHz。则 由此可见,输出端信噪比得到改善,信号远大于噪声,信号被检测出来。,最大信噪比原理,为获得最大的输出信噪比,考虑系统频率函数与输入信号之间的关系。,td时刻系统输出的功率信噪比,最大信噪比为:,当输入为均匀频谱噪声时,输出的最大信噪比,此时,最大信噪比与信号波形无关,表征了输入信号的能量特征称为“能量对比率”。,根据施瓦茨不等式的共轭平行条件可求出系统最大输出信噪比条件:,匹配滤波器,系统最大输出信噪比条件:,满足上式的信号处理系统称为匹配滤波器。特点如下:1)匹配滤波器的幅频特性与信号的幅度频谱成正比例。2)在每一信号频率上,匹配滤波器的相位与信号的相位符号相反,使得信号的能量
5、被完全吸收。3)匹配滤波器引入了一个与频率成线性关系的相位变化,它代表着一个恒定的延时td。4)匹配滤波器的脉冲响应为输入信号在时间轴上相对于某时刻td的反转。可以采用互相关的方法实现。,4.4.3 窄带滤波法,原理:利用信号的功率谱密度较窄而噪声的功率谱相对很宽的特点;用一个窄的带通滤波器,将有用信号的功率提取出来。由于窄带通滤波器只让噪声功率的很小一部分通过,而滤掉了大部分的噪声功率,所以输出信噪比能得到很大的提高。,对一个白噪声来说,当其通过一个电压传输系数为Kv,带宽为B=f2-f1的系统后,则输出噪声为:由上式可以看出:噪声输出总功率与系统的带宽成正比。因而可以通过减小系统带宽来减小
6、输出的白噪声功率。,例如:1/f 噪声通过与上相同的系统之后,其输出噪声功率为:由上式可见,仍然可以通过减小通频带B来减小输出端的1/f 噪声功率。,如图有限正弦信号及白噪声的功率谱密度曲线使用了窄带通滤波器后窄带通滤波器在上述(白噪声)条件下的信噪比改善为,输出端信号功率 Ps0:输出端噪声功率 Pn0:即:也就是:Bf和Bn的关系,有点差别但不大。Bn为窄带通滤波器的等效噪声带宽,Bi为输入噪声的带宽,即使是白噪声,它也有一个带宽,实际上并不是到无穷大。,窄带通滤波器的实现方式:常见的有双T选频,LC调谐,晶体窄带滤波器等。双T选频可以做到相对带宽等于千分之几左右。晶体窄带滤波器可以做到等
7、于万分之几左右。但即使是这样,这些滤波器的带宽还嫌太宽,因为这种方法不能检测深埋在噪声中的信号,通常它只用在对噪声特性要求不很高的场合。更好的方法是用锁定放大器和取样积分器,这在后面再作理论。,双路消噪法,原理:利用两个通道对输入信号进行不同的处理,然后设法消去共同的噪声,最后得到有用的信号。特点:这种方法只能用来检测微弱的正弦波信号是否存在,并不能复现波形。,双路消噪法的原理框图,这个方法能够检测输入信噪比小于1/10的正弦波信号的存在。,4.4.5 同步累积法,基本原理:利用信号的重复性和噪声的随机性,对信号重复测量多次,使信号同相地累积起来,而噪声则无法同相累积,使信噪比得到改善。显然,
8、测量次数越多,则信噪比的改善越明显。,若测量次数为n,则累积的信号等于:其中 为累积信号的平均值,另一方面,重复测量几次后,根据各次噪声的不相关性,则累积的噪声等于:式中最后的En为累积噪声的均方根值。,得到信噪比为:测量次数n越大,则信噪比的改善越明显。而增加测量次数,就意味着延长测量时间,所以信噪比的改善是以耗费时间换来的。为了便于数值计算,可以改写输出信噪比与输入信噪比之间的关系:由此可得:,根据输入信噪比的大小以及对输出信噪比的数值要求,可算出重复测量的次数n。例如,若已知,要求则:,同步累积器的原理框图,同步累积器的原理框图如图所示:,其中V1(t)为输入信号,V2(t)为与V1(t
9、)周期相同的参考信号,同步开关受V2(t)产生的控制信号控制,能保证V1(t)在累积器中同相地累积起来。,注意:在实际应用同步累积法的时候,必须注意满足三个条件:(1)信号应重复(2)有适当的累积器(3)能做到同相累积要保证做到同相累积则要根据不同的被检测信号波形,确定不同的参考信号。,4.4.6 锁定接收法,锁定接收法的原理框图如下图所示:,图中,V1(t)为输入信号,V2(t)为参考信号。这两个信号同时输入乘法器进行乘法运算,然后再经过积分器,最后得到输出信号V0(t)。,1考虑最简单的情况:信号中没有含噪声,只有信号,且为正弦信号:参考为:且则,两信号相乘后,通过积分器进行积分。假定积分
10、器的积分时间常数为T,而且积分时间也取=T,则:由上式可见,锁定接收法最后得到的是直流输出信号,而且这个直流信号的大小和两信号的相位有关。,2只有噪声输入时,即令:.其中幅度A(t),相角 均为随机变量,这时代表了噪声中的频率为的分量。则此时锁定放大器的输出为:当积分时间T时,上式中两项积分均趋于零。故Vn0(t)=0。,当噪声的频率不为时,亦有同样结果。这表明当积分时间很大时,锁定放大器对噪声的抑制能力很强。在实际中,由于T不可能做得很大,或者积分器用低通滤波器来代替,这时锁定放大器的输出的噪声不为零,而在零附近起伏变化。,4.4.7 相关检测法,1 引言为了将被噪声所淹没的信号检测出来,人
11、们研究各种信号及噪声的规律,发现信号与信号的延时相乘后累加的结果可以区别于信号与噪声的延时相乘后累加的的结果,从而提出了“相关”的概念。由于相关的概念涉及信号的能量及功率,因此先给出功率信号和能量信号的定义。,2 能量信号与功率信号我们用时间函数f(t)表示信号,在一定的时间间隔里,如-T/2,T/2;把信号f(t)作用于1的电阻上,电阻所消耗的能量为:如果为有限值,就称信号f(t)为能量信号,E 就是f(t)所具有的能量。,如果则可以求信号f(t)的平均功率P,若P为有限值,且不为零,则称f(t)为功率信号。P就称为信号f(t)的平均功率。如果f(t)为实函数,则上述各式中,3 相关函数相关
12、函数分为互相关函数和自相关函数,而且根据能量信号和功率信号分别定义。如果x(t)和y(t)是能量信号,则x(t)和y(t)的互相关函数定义为:或互相关函数是两信号之间时差的函数。,如果x(t)与y(t)是同一信号,即x(t)=y(t),此时互相关函数Rxy(T)就称为自相关函数,并简记作R()。,如果x(t)、y(t)是功率信号,则x(t)与y(t)的互相关函数定义为:同样,如果是实信号,*号可以去掉。,4 相关检测原理原理:信号在时间上相关,噪声在时间上不相关。这两种不同的相关特性,可以把深埋于噪声中的周期信号提取出来,这是微弱信号检测的一种有效方法。根据Wiener-khinthine定理
13、:或 式中Sx()是x(t)的功率谱密度函数。即x(t)的自相关函数Rxx()和功率谱密度函数Sx()是一对付里叶变换。,正是由于Wiener-khinthine定理,找到了求取随机信号自相关函数的计算方法.根据可以求出一些常用信号及随机过程的自相关函数。例如:正弦波:设则根据定义式,可得:由此可见,周期信号的自相关函数仍为周期信号,且周期不变。,白噪声所谓白噪声,即其功率谱密度与频率无关,为一常数,令白噪声的功率谱密度根据Wiener-khinthine定理,白噪声的自相关函数 将t换成,依然成立,这就说明白噪声的自相关函数只在=0时存在,随着的增大,衰减很快。,带通白噪声实际的白噪声也都是
14、在一定带宽之内的白噪声,这种一定带宽内的白噪声可定义其功率谱密度为:这种带通白噪声的带宽决定于系统中的通频带。,如果两个信号或随机过程互相完全没有关系,(例如信号与噪声)则其互相关函数将为一个常数,并且等于两个信号平均值的乘积;若其中一个的平均值为零(如噪声)则它们的互相关函数Rxy()将处处为零,即完全不相关。如果两个信号是具有相同的基波频率的周期函数,则它们的互相关函数将保存它们基波频率以及两者所共有的谐波,而相位则为两个原信号相应频率成份的相位差。,5 相关检测,根据相关函数的性质,可以利用乘法器,延时器及积分器进行相关运算,从而将周期信号从噪声中检测出来,这就是所谓的“相关检测”。相关
15、检测可分为自相关检测与互相关检测。,Si(t):信号;ni(t):噪声;x(t)=Si(t)+ni(t):信号Si(t)被噪声ni(t)所淹没,通过延时器后在乘法器实现乘法运算:x(t)x(t-),1)自相关检测自相关检测的原理框图,通过积分器输出得到:,上式中,由于Rsn()、Rns()分别表示信号和噪声的互相关函数,由于信号与噪声不相关,故几乎为零,而Rnn()代表噪声的自相关函数,随着积分时间的适当延长,Rnn()也很快趋于零。因此,经过不太长的时间积分,积分器之输出中只会有一项Rss(),故:这样,便可顺利地将淹没在噪声中的信号检测出来。,例如,被检测信号为一余弦信号时,设 则:相应的
16、自相关检测输出波形如图所示:,Rss()为信号的自相关函数,它是与信号同频的余弦函数。Rnn()为噪声的自相关函数,随的增加,衰减得很快。Rxx()为输出端最初的波形,仍混有噪声的干扰。,(2)互相关检测互相关检测的原理框图如图所示:,输入乘法器的是被噪声ni(t)所淹没了的信号Si(t)即x(t)=ni(t)+Si(t)和被延时了的与被检测信号Si(t)同频率的参考信号y(t),乘法器的输出为:,Rny()是噪声与参考信号的互相关函数;Rsy()信号与参考信号的互相关函数;参考信号和噪声是不相关的,Rny()随积分时间T的延长而趋于零;参考信号和信号是相关的,随积分时间T的延长而趋于某一函数值Rsy()。,比较互相关输出和自相关输出:自相关检测噪声有关项要少2项,故互相关检测比自相关检测抑制噪声的能力强。但互相关检测要求用与被测信号同频率的参考信号y(t)。当被测信号Si(t)未知时,要取得与Si(t)同频率的信号在某些情况下是困难的。要做大量试验工作,才能确定,这时一般不采用互相关检测。锁定放大器就是利用互相关检测原理制成的弱检仪器,因此锁定放大器可以看成是一个互相关检测仪。,