《《建筑与数学二》PPT课件.ppt》由会员分享,可在线阅读,更多相关《《建筑与数学二》PPT课件.ppt(136页珍藏版)》请在三一办公上搜索。
1、建筑与数学(二)几何图形,如果说数字的起源是远古人类感知、记录和计算事物“多少”而产生的,那么图形是远古人类感知、描绘和构成事物的形状而产生的。“大漠孤烟直,长河落日圆”,自然界事物最普遍的基本形状是圆形(或近似圆形),蜂巢的六边形也接近圆形。因为自然因素通常是各向同性的,树干长粗,各方向都能长,所以是圆的,不会长成方的。圆是各向同性的,方就不是,所以自然界几乎没有方形,方是人类的创造。方的创造与人类的建筑活动有关,方形可以无缝的连续拼接,因为方形的角是直角(90),四个直角可以无缝地拼成全角(360);立方体既是直角,而且六个面两两平行,可以稳定的无缝的砌筑。,人类是如何发现方的呢?观察自然
2、。除了“落日圆”,还有“孤烟直”。地球上,有一个因素有确定的指向性,就是地球引力(重力),其方向是垂直地面。人类观察到树木垂直生长,手里的东西掉下来,垂直下落,烟往上升等;还观察到水面是平的(所以叫“水平”,也是重力的结果),地面要水平的,桌面也要水平,否则东西放上去要滑动。从垂直、水平就可以逐渐认识到方形平面、立方体和平行表面,自然界有些石头有平行表面(水成岩,也是重力形成的)。,杉树林竖直的树干,水平的湖面,黑格尔说过:“建筑是地球引力的艺术”建筑物的屋盖形状可以三维变化,丰富多彩,“奇形怪状”;墙体可以在平面上“曲折”,而在竖直方向通常是直立的;当屋顶和墙面合成一体,墙也可以是三维变化的
3、形状。但是建筑物的楼层只能是水平的,人们需要在上面活动。,高层建筑体型再复杂,楼层都必须是水平的。确定水平与垂直,至今仍是建筑行业建造活动中最基本和最重要的工作。,迪拜“舞蹈大楼”扎哈,阿布扎比“首都之门”,多伦多“梦露大厦”马岩松,尼罗河每年一次洪水泛滥促成了古埃及文明的产生。洪水到来时,会淹没两岸农田,洪水退后,又会留下一层厚厚的河泥,形成肥沃的土壤。,洪水退去后,原有的土地界限淤没了,需要重新丈量界定。法老政府按土地征税,也要丈量计算土地面积。这就促使了古埃及几何学的发展。4500年前建造的建筑史上的奇迹胡夫金字塔,既是工程学的巨大成就,也表现出古埃及几何学的辉煌。,塔高146.6米,塔
4、身倾角为51度52分,塔底部为边长230米的正方形,边长的误差仅2厘米,直角的误差仅仅12。,几何原本古希腊 欧几里得 最早用公理法则建立起演绎数学体系的典范。古希腊数学的基本精神,是从少数的几个原始假定(定义、公设、公理)出发,通过逻辑推理(因为,所以),得出结论。(并可作为新的可接受的命题)爱因斯坦:“西方科学的发展是以两个伟大成就为基础,那就是:希腊哲学家发明的形式逻辑体系(在欧几里得几何学中),以及通过系统的实验发现有可能找出因果关系(在文艺复兴时期)”。,。,明 徐光启译本,第一个印刷版本,抄写在纸草上的残片,能够无间隙拼连的单一的正多边形只有三种:正三角形、正方形、正六边形。因为它
5、们的内角是360的整分数:360/12=60,360/4=90,360/6=120。,胞体几何(Cell Geometry),六边形在自然界中因为其最接近圆形,是上述三种图形中最符合“经济法则”同样面积,边长最短。,“水立方”(奥运游泳馆)表皮 Skin,尽管每个元泡形状不同,但交点都是三条边相交的“Y”形。,镶嵌图形,通过“拉伸”或“压扁”,等腰三角形、长方形、扁六边形,也能以单一个体无间隙镶嵌。,用不同的正多边形来拼铺整个平面,但每一个交叉点周围的正多边形种类和顺序都相同,叫做半正镶嵌图。半正镶嵌图有8种。,4+6,3+12,4+6+12,3+4+6,3+6,3+6,3+4,3+4,伊斯兰
6、清真寺装饰图案,12,三角形镶嵌 华盛顿美术馆东馆,三角形镶嵌 旧金山圣玛丽教堂,正多面体,只有五种:正4面体正三角形面,4个顶点,一个顶点会聚3条棱边,共6条棱边;正6面体(正方体)正四边形面,8个顶点,一个顶点会聚3条棱边,共12条棱边;正8面体正三角形面,6个顶点,一个顶点会聚4条棱边,共12条棱边;正12面体正五边形面,20个顶点,一个顶点会聚3条棱边,共30条棱边;正20面体正三角形面,12个顶点,一个顶点会聚5条棱边,共30条棱边;,欧拉公式:V F E=2 V:顶点数 F:面数 E:棱边数,二十面体:面是正六边形与正五边形组合,正五边形和正三角形组合,42,65,45,63,64
7、,62,通过组合和对偶可以产生丰富的变化,44,68,12+20,83,84,85,其他同形多面体,菱形三十面体,梯形二十四面体,菱形十二面体,星状二十面体,星状十二面体,五角六十面体,22,富勒发明的张力杆件穹窿,直径76m。三角形金属网状结构组合成一个球体。,蒙特利尔博览会美国馆 富勒 1967,“以最小追求最大。”(Doing the most with the least.)圆球建筑以“无一定尺寸限制的结构”为概念,不连续的和连续的张力相结合,以最小的材料和最合理的结构、最小的投资创造出最大的内部空间。富勒说,“评判建筑结构优劣的一个好指标,是遮盖一平方米地面所需要的结构重量。常规墙顶
8、设计中,这数字往往是2500公斤每平方米,但网球格顶设计却可以用4公斤每平方米完成。”,富勒是第一个运用六边形和五边形构成的球形薄壳建筑结构,作成能源耗费极低,强度却很强大的建筑物,后来这种结 构被广泛运用,现代运动的足球,就是运用这个结构所制造。这个结构也协助科学家发现了碳C60,后来被称为 富勒烯。,24,可滚动的多面体住宅 波哥达 哥伦比亚 2009年,美国丹佛机场候机楼,慕尼黑奥林匹克体育场,张拉膜结构,慕尼黑奥林匹克体育场张拉膜结构,张拉膜结构常用肥皂膜来比拟。,埃舍尔的几何艺术,摩里茨科奈里斯埃舍尔 M.C.Escher(1898-1972)荷兰艺术家。1922年毕业于Arnhem
9、(阿纳姆)建筑与装饰艺术学院,建筑专业。埃舍尔把自己称为一个“图形艺术家”。,埃舍尔的镶嵌图形,埃舍尔的镶嵌图形,埃舍尔的镶嵌图形,圆之界限 1959,方之界限 1959,埃舍尔的镶嵌图形,埃舍尔的“迷惑的图画”,埃舍尔“迷惑的图画”,瀑布 1961,埃舍尔“迷惑的图画”,现实 1953,对称 在数学上,将两种状态间通过确定的规则对应起来的关系,称为从一种状态到另一种状态的变换。如果某一现象(或系统)在某种变换下不改变,则说该现象(或系统)具有该变换所对应的对称性。圆对过圆心且与圆所在平面垂直的直线具有旋转变换的对称性,并对直径具有镜像反射变换的对称性。无论怎样复杂的转动都不能把左手转成右手。
10、围棋盘(方格网,规则网格)具有平移变换的对称性;图形的角度和长度比具有相似变换的对称性;以相等的时间间隔平移的对称性,通常称为周期性;一个静止的物体具有任意时间平移的对称性。内特尔(Noether)定理:如果运动规律在某一变换下具有对称性,必相应存在一个守恒定律。例如:物理定律不随时间变化,能量就守恒;作用量在空间平移下保持不变,动量就守恒;作用量在空间旋转下保持不变,角动量就守恒;,复合变换下的对称性 左图是以图形的垂直中线作镜像反射变换,并作“黑白颜色互变”变换。,对称是自然界最普遍的形态,对称是人类文明开始的形态,对称是人类文明开始的形态,三星堆和金沙遗址出土的“太阳”器,圆形对称。,对
11、称 庄重、稳定、平衡,对称布局会突出和加强中轴线,拓扑几何“橡皮几何”,以色列的一位城市规划学者在清华建筑学院做讲座,说到老北京的街道都是南北正交,而中东的城市街道弯曲。他讲完,我向同学讲,两者的街道形态在拓扑上“同构”的。每一个交叉口都是两条街道相交。,一个几何图形任意“拉扯”(就像画在橡皮上),只要不发生割裂和粘接,可做任意变形,称为“拓扑变形”。两个图形通过“拓扑变形”可以变得相同,则称这两个图形是“拓扑同构”。拓扑几何研究几何图形在一对一连续变换中了不变的性质。不考虑几何图形的尺寸、面积、体积等度量性质和具体形状。,此图和上面两图同构,此图和上面两图不同构,放射形街道,方格形街道,上述
12、圆、三角形、方形和任意封闭曲线同构 在拓扑变换中封闭围线的“内”和“外”的区分不变,边线上点的顺序不变。,上述四个图形不同构:封闭曲线,开口曲线,有一个三叉点的开口曲线,有一个四叉点和两个封闭域的封闭曲线 在拓扑变换中。端点、三叉点、四叉点、封闭域数量不变。,高校教材中国建筑史第五版 P229“拓扑同构图”,封闭图形的“里”与“外”,封闭围线构成一个封闭图形,如何判别“里”与“外”呢?在图形的“外”部确定一点,这容易判定,只要它离图形足够远。从这一点出发到需判定的点的路径,如果和围线(边界)相交奇数次,则需判定的点在“里”,如果和围线(边界)相交偶数次,则需判定的点在“外”。当然首选的出发点在
13、“里”,从此点到需判定的点的路径,如果和围线(边界)相交奇数次,则需判定的点在“外”,如果和围线(边界)相交偶数次,则需判定的点在“里”。也可简述为:从外到里,从里到外的路径与边界交奇数次;从外到外,从里到里的路径与边界交偶数次。路径可以是曲折的,也可以穿过边界进进出出。房屋就是封闭图形(体),人流流线就是“路径”,墙是“边界”,墙上的门就是“交点”。,高校教材中国建筑史第五版 P228“四、同构关系与自然秩序”,莱特设计的三个住宅的平面是拓扑同构的。参见建筑设计与人文科学,欧美小住宅和中国四合院的拓扑结构不同,前者与球同构,后者与轮胎同构。,球和立方体同构,与轮胎不同构。,头颅拓扑比较,看动
14、物的进化。,莫比乌斯带 Mbius Strip 德国数学家莫比乌斯发明,将一个长方形纸条的一端固定,另一端扭转半周后,把两端粘合在一起,得到的曲面就是莫比乌斯带。,用一种颜色,在纸圈上面涂抹,画笔没有越过纸边,却把整个纸圈涂抹成一种颜色,不留下任何空白。或,一个蚂蚁不越出纸边,就可以爬过纸面所有表面。,试验:(1)如果在裁好的一条纸带正中间画一条线(正反两面都画上中线),粘成莫比乌斯带,然后沿中线剪开,把这个圈一分为二,结果会怎样?(2)在裁好的一条纸带正中间画两条线(三等分带子宽度,正反两面都画上线),粘成莫比乌斯带,然后沿线剪开,结果又会怎样?沿着线剪的时候,要不要剪完一条线,再剪另一条线
15、?,马清运设计的莫比乌斯造型雕塑,扎哈设计的莫比乌斯造型雕塑,莫比乌斯带的建筑造型概念,北京设计院:北京凤凰传媒中心,凤凰传媒中心 北京设计院,60,凤凰传媒中心 北京设计院,UN Studio将莫比乌斯环的概念发展成了一座建筑,位于阿姆斯特丹近郊的莫比乌斯住宅。建筑师以人在一天的活动、位移为主线,运用数字技术,将拓扑学中的莫比乌斯环作为建筑生成的概念。左图描绘了夫妇两人如何一起生活、分开工作又如何相遇在共享空间。两个人运行自己的轨迹,有时汇合,有时甚至可能会互换角色。这个住宅混合了多种情况,将不同的行为置于一个环形结构之中,工作、家庭生活、独处都能在环形中找到自己的位置。材料(主要是玻璃和混
16、凝土)相互依赖又转换位置,混凝土结构在内部成为家具而立面上的玻璃在内部成为了隔墙。,莫比乌斯住宅 UN Studio,在这幢住宅里,作为垂直交通的楼梯成为莫比乌斯环形成的核心,楼梯扭转了上下层的轴线,形成了全新的空间形式。,莫比乌斯住宅 UN Studio,莫比乌斯住宅 UN Studio,ICA 假日之家 UN Studio 2006,哈萨克斯坦新国家图书馆方案竞赛中,丹麦BIG事务所的设计作品取得了第一名。“设计是将穿越空间与时间的四个世界性经典造型圆形、环形、拱形和圆顶形以莫比乌斯圈的形式融合在了一起。,哈萨克斯坦国家图书馆 BIG,哈萨克斯坦国家图书馆 BIG,哈萨克斯坦国家图书馆 B
17、IG,威尼斯双年展上的莫比乌斯圈UN Studio,杭州科技馆方案,2010世博会丹麦馆 BIG,2010世博会丹麦馆 BIG,2010世博会丹麦馆 BIG,Klein Bottle,三维空间中的克莱因瓶,没有“内部”和“外部”之分。由德国数学家菲利克斯克莱因提出的。克莱因瓶和莫比乌斯带非常相像。克莱因瓶的结构是,一个瓶子底部有一个洞,现在延长瓶子的颈部,并且扭曲地进入瓶子内部,然后和底部的洞相连接。这个物体没有“边”,它的表面不会终结。一只爬在“瓶外”的蚂蚁,可以轻松地通过瓶颈而爬到“瓶内”去。克莱因瓶是一个在四维空间中才可能真正表现出来的曲面,,把克莱因瓶沿着它的对称线切下去,得到两个莫比
18、乌斯带。,有人说,把克莱因瓶投影到平面上,是和中国阴阳图同构的。,复杂的克莱因瓶,克莱因瓶 Klein Bottle,克莱因瓶 Klein Bottle,克莱因瓶住宅 麦克布莱德 McBride Charles Ryan Architects,克莱因住宅,克莱因住宅,79,2010世博会 委内瑞拉馆 法昆多巴乌多因特兰,2010世博会 委内瑞拉馆 法昆多巴乌多因特兰,英国AA学院学生设计作业,2011,分形几何,1967年,英国学者曼德布伦特(Mandelbrot)在科学杂志发表论文“英国的海岸线到底有多长?”。,首先,这个问题涉及到如何丈量,在一张百万分之一地图上量,在若干张万分之一地图上量
19、再相加,到现场用米尺一段一段量再加起来,在现场用厘米为单位“精细”地去量,结果都不一样。客观事物有它自己的特征长度,要用恰当的尺度去测量。如果用公里作测量单位,从几米到几十米的一些曲折会被忽略;改用米来做单位,测得的总长度会增加,但是一些厘米量级以下的还是不能反映出来。,其次,什么是英国的海岸线(长度),它不像万里长城,绵延万里,只要不怕费时费事,总可以量出来。但海岸线不同,百万分之一地图上是曲曲折折的,万分之一地图还是曲曲折折的,到现场观察,百米的海岸线还是曲曲折折的,甚至蹲下来看眼前的海岸线(水与岸的交界线)还是曲折的。即海岸线在不同的尺度下具有相似性。一些客观事物具有自相似的层次结构,适
20、当的放大或缩小几何尺寸,整个结构并不改变。局部与整体在形态上具有统计意义上的相似性,称为自相似性,曼德布伦特经过详细计算得出以下结果:测量步长为500公里时,则海岸线长度为2600公里;测量步长为100公里时,则海岸线长度为3800公里;.,正是在这样的一些概念和理论的讨论基础上,20世纪70年代末80年代初,产生了新兴的分形几何(fractal geometry)。曼德布伦特1975年发表分形对象:形态,机遇和维数,确立了分形几何理论体系。1982年改版为自然的分形几何学,对自然界中的分形现象进行几何学解释。曼德布伦特给出分形的定义:分形是局部与整体在某种意义下存在相似性的形状。强调分形物体
21、基本特征:(1)每点处有无限的细节;对于分形物体的放大,可以连续地看到如同在原图中出现的更多的细节。(2)物体整体与局部特性之间的“自相似性”,或者说唯有具备自相似结构的那些几何形体才是分形。后来,英国数学家法尔科内提出分形应具有以下所有五个基本特征或其中的大部分:形态的不规则性;结构的精细性;局部与整体的自相似性;维数的非整数性;生成的迭代性。,美国佛罗里达千岛群岛Florida Panhandle,南阿拉斯加冰原沼泽South Alaska,瀑布的形态,闪电的形态,一些简单的分形图形的生成,谢尔平斯基衬垫,康托尔粉尘集,边长为1的正三角形的面积是3/4=S0边长为1/3的正三角形面积A是3
22、/36=(1/9)S0每分一次,边长为前一次的1/3,面积是1/9;但增加的小三角形是4个,增加的面积是:(4/9)A,于是从初始三角形一边增加出来的面积是:1+4/9+(4/9)2+(4/9)3+A=9/5 A=9/5 3/36=3/20三边增加的面积是33/20。加上初始三角形自身面积3/4,总面积是23/5,是有限的。,围合有限面积的边界长度却可以是无限长的。,每操作一步,边界的长度就是前一次的4/3,一直分下去,(4/3)n 当 n,边界的长度是无限长的。,科赫曲线,科赫曲线 D=ln4/ln31.2619,康托尔粉尘集 D=ln2/ln30.6309,谢尔平斯基衬垫 D=ln3/ln
23、21.5850注:每边2等分,得到4个三角形,D=ln4/ln2=2;中间挖去1个,剩3个,D=ln3/ln2,这两个分形图反映,线(D=1)由于弯曲而维数增加;面(D=2)由于挖空而维数减小。线弯曲向面挺进,面挖空向线靠拢。它们的复杂性都比整数平面大。,1条线3等分,中间一段变成2根凸起的线段,成为4根线段。,1条线分3段,去掉中间一段变成2根线段。,分数维的计算,谢尔平斯基地毯 D=ln8/ln31.8928,谢尔平斯基海绵D=ln20/ln32.7268,注:每边3等分,得到9个小正方形,D=ln9/ln3=2,挖去中间一个,剩下8个,D=ln8/ln3,注:每边3等分,得到27个小立方
24、体,D=ln27/ln3=3,挖去中间7个每个面1个,6个面共6个,再加上正中心1个,剩20个,D=ln20/ln3,(a)迭代简单的自然及几何形态:分形的组成部分是整个物体的收缩形式。从一初始形状开始,对整个形体应用缩放参数s来构造物体的子部件,对子部件再用相同的缩放参数s。若对收缩部分使用随机变量,则分形称为统计自相似。如模拟树、灌木和其它植物。(b)随机迭代(仿射)复杂自然形态:分形的组成部分由不同坐标方向上的不同缩放参数sx、sy、sz来形成。通过引进随机变量,可获得统计自仿射分形。如闪电、水和云等。(c)非线性变换复杂几何形态:包括自平方分形(美丽图案),如Mandelbrot集,它
25、由在复数空间中使用平方函数形成。,分形几何图形的创建方法,迭代法 迭代是重复反馈过程的活动,其目的通常是为了逼近所需的目标或结果。每一次对过程的重复被称为一次“迭代”,而每一次迭代得到的结果会被用来作为下一次迭代的初始值。,第一确定迭代变量单元 在可以用迭代算法解决的问题中,至少存在一个直接或间接地不断由旧值递推出新值的变量,这个变量就是迭代变量。第二建立迭代关系式规则所谓迭代关系式,指如何从变量的前一个值推出其下一个值的公式。第三对迭代过程进行控制次数在什么时候结束迭代过程?迭代次数或者结束迭代过程的条件。,等角螺线,0.1,0.3,0.4,0.6,0.75,0.85,计算机生成的“分形蕨”
26、,创建分形几何图形的随机迭代(仿射分形),创建分形几何图形的随机迭代(仿射分形),计算机生成的山地景观,分形艺术,分形艺术,创建分形几何图形的一些软件,Fractint:分形数学研究工具Ultra fractal:优秀的分形艺术图形创作工具,具有色彩运算、色彩梯度调整、图层设定、图形变换、图形装饰等强大功能,能够做出绚丽多彩的分形艺术作品。Apophysis 7X:生成的分形图像具有非常强烈的艺术效果。Chaoscope:3D分形艺术创作软件,操作简单。Mandelbulb3d:3D分形艺术创作软件。Incendia:3D分形艺术创作软件。Ferryman Fractal:中国人自己的分形艺术
27、创作软件。Ultimate Fractal:具有惊人的细节。Fractal Explorer:免费分形软件,简单的生成、浏览功能。GroBoto:强大的3D分形创作软件XenoDream:采用IFS算法,使用基本物理结构Holon的迭代形成分形图形。Structure Synth:需要自己编写作图代码。,三维分形艺术,Mandelbulb3d生成的3D分形图形,三维分形艺术,Mandelbulb3d生成的3D分形图形,Mandelbulb3d生成的3d分形图形,美国羚羊谷实景照片,三维分形艺术,分形天线,分形在家具设计中的应用,分形在家具设计中的应用,超越无限空间装置,法国艺术大师Serge Salat,北京胡同的肌理(乾隆年间的北京地图)自相似性,Marin市民中心 赖特,墨尔本联邦广场 LAB Architecture Studio,墨尔本联邦广场 LAB Architecture Studio,印度,孟买,Tote餐厅 塞瑞尔,印度,孟买,Tote餐厅 塞瑞尔,东门咖啡厅设计 清华大学本科生计算机实习作业,玉河城市设计 清华大学研究生studio作业,玉河城市设计 清华大学研究生studio作业,玉河城市设计 清华大学研究生studio作业,玉河城市设计 清华大学研究生studio作业,玉河城市设计 清华大学研究生studio作业,谢 谢,