《心理统计学》PPT课件.ppt

上传人:小飞机 文档编号:5509138 上传时间:2023-07-15 格式:PPT 页数:142 大小:647KB
返回 下载 相关 举报
《心理统计学》PPT课件.ppt_第1页
第1页 / 共142页
《心理统计学》PPT课件.ppt_第2页
第2页 / 共142页
《心理统计学》PPT课件.ppt_第3页
第3页 / 共142页
《心理统计学》PPT课件.ppt_第4页
第4页 / 共142页
《心理统计学》PPT课件.ppt_第5页
第5页 / 共142页
点击查看更多>>
资源描述

《《心理统计学》PPT课件.ppt》由会员分享,可在线阅读,更多相关《《心理统计学》PPT课件.ppt(142页珍藏版)》请在三一办公上搜索。

1、心理统计学,统计学是一种思想方法常用统计指标 概率及概率分布抽样分布参数估计参数假设检验平均数差异的显著性检验方差分析2检验总体比率的推断相关分析回归分析非参数检验抽样设计,第一章统计学是一种思想方法,确定现象与随机现象回归现象数量规律性概率,随机现象,学生成绩心理测验得分候车人数作物产量产品质量收入支出,数量规律性,平均数方差、标准差比率、百分比相关系数数量分布,正态分布,双峰分布,其他分布,统计学中的几个基本概念,随机变量总体有限总体与无限总体样本大样本与小样本参数与统计量返回,第二章数据的搜集与整理,数据的水平次数分布表次数分布图,数据的水平,间断型随机变量连续型随机变量,称名量表顺序量

2、表(等级量表)等距量表等比量表,间断型随机变量,取值个数有限的数据人数个数名次五分制得分,连续型随机变量,取值个数无限的数据身高体重智商时间长短百分制得分,四种数据水平,称名量表学号、房间号、邮政编码、电话号码顺序量表(等级量表)名次、等级、五分制得分等距量表温度计读数、百分制得分等比(比率)量表长度、时间,次数分布表,简单次(频)数分布表相对次数分布表累积次数分布表大于制与小于制累积相对次数分布表,次数分布表,某学校学生人数按性别分类,次数分布表,某学校一年级学生语言能力测验得分次数分布表,某班级语文测验结果,99 96 92 90 90 87 86 84 83 8382 82 80 79

3、78 78 78 78 77 7777 76 76 76 76 75 75 74 74 7372 72 72 71 71 71 70 70 69 6968 67 67 67 65 64 62 62 61 57,答案,次数分布图,简单次(频)数分布图相对次数分布图累积次数分布图累积相对次数分布图,简单次数分布图直方图,简单次数分布图次数多边图,次数多边图的优点,累积次数分布图,累积相对次数分布图,散点图,轮廓图,雷达图,脸谱图,第三章常用统计指标,集中量算术平均数中位数众数加权平均数几何平均数调和平均数,差异量全距平均差方差与标准差相对差异量差异系数偏态量峰态量,集中量,集中量是代表一组数据典型

4、水平或集中趋势的量。它能反映次数分布中大量数据向某一点集中的情况。集中量包括算术平均数、加权平均数、几何平均数、调和平均数、中位数、众数等。,算术平均数,算术平均数是所有观察值的总和除以总次数所得之商,简称为平均数或均数。,算术平均数的优点,反应灵敏;严密确定,简明易懂,计算方便;适合代数运算;受抽样变动的影响较小;样本算术平均数是总体平均数的最好估计值,算术平均数的缺点,易受两极端数值(极大或极小)的影响;某村农户月收入状况120,127,130,131,132,132,135,136,137,139,140,145,146,149,153,158,160,320,400平均数162.63一

5、组数据中某个数值的大小不够确切时就无法计算其算术平均数。,中位数,中位数是位于依一定顺序排列的一组数据中央位置的数值,在这一数值上、下各有一半次数分布着。中位数的原始数值计算方法:12 14 15 15 17 18 20 23 24:1712 14 15 15 17 18 20 23 24 25:17.5,中位数的应用及其优缺点,中位数虽然也具备一个良好的集中量所应具备的某些条件,例如比较严格确定、简明易懂,计算简便,受抽样变动影响较小,但是它不适合进一步的代数运算。它适用于以下几种情况:(1)一组数据中有特大或特小两极端数值时;(2)一组数据中有个别数据不确切时;(3)资料属于等级性质时。,

6、地位量*,百分位数次数分布中相对于某个特定百分点的原始分数,它表明在分布中低于该分数的个案占总次数的百分比。,百分等级次数分布中低于特定原始分数的次数百分比。,众数,众数是集中量的一种指标。对众数有理论众数及粗略众数两种定义方法理论众数是指与次数分布曲线最高点相对应的横坐标上的一点。粗略众数是指一组数据中次数出现最多的那个数。,众数的优缺点,众数虽然简明易懂,但是它并不具备一个良好的集中量的基本条件。它主要在以下情况下使用:当需要快速而粗略地找出一组数据的代表值时;当需要利用算术平均数、中位数和众数三者关系来粗略判断次数分布的形态时;利用众数帮助分析解释一组次数分布是否确实具有两个次数最多的集

7、中点时。,加权平均数,加权平均数是不同比重数据(或平均数)的平均数。计算公式为:,几何平均数,几何平均数是n个数值连乘积的n次方根。计算公式为当一个数列的后一个数据是以前一个数据为基础成比例增长时,要用几何平均数求其平均增长率。,差异量,差异量用于表示数据的变异程度或离散程度。常用的差异量有全距、平均差、方差、标准差和差异系数等。,全距,全距指一组数据中最大值与最小值之差。优点:概念清楚,意义明确,计算简单;缺点:容易受极端数值的影响,反应不灵敏。,平均差,平均差就是每一个数据与该组数据的中位数(或算术平均数)离差的绝对值的算术平均数。,计算公式:,总体的方差和标准差,方差:指离差平方的算术平

8、均数定义公式和计算公式:,标准差,标准差是指离差平方和平均后的方根。即方差的平方根。定义公式和计算公式:,样本的方差与标准差,样本的方差样本的标准差,相对差异量(差异系数),差异系数:标准差与其算术平均数的百分比。其计算公式为用途:两种单位不同单位相同而两个平均数相差较大的资料。,第四章概率及概率分布,概率的一般概念后验概率先验概率概率的性质概率的加法和乘法二项分布正态分布,概率的统计定义后验概率,以随机事件A在大量重复试验中出现的稳定频率值作为随机事件A概率的估计值,这样获得的概率称为后验概率。计算公式为:,硬币朝向试验,概率的古典定义先验概率,是通过古典概率模型加以定义的,该模型要求满足两

9、个条件:(1)试验的所有可能结果是有限的;(2)每一种可能结果出现的可能性(概率)相等。若所有可能结果的总数为n,随机事件A包括m个可能结果,则事件A的概率计算公式为:,概率的性质,任何随机事件A的概率都是介于0与1之间的正数;不可能事件的概率等于0;必然事件的概率等于1。,小概率事件,P.05P.01,概率的加法,在一次试验中不可能同时出现的事件称为互不相容的事件。两个互不相容事件和的概率,等于这两个事件概率之和。用公式表示为:P(A+B)=P(A)+P(B)其推广形式是P(A1+A2+An)=P(A1)+P(A2)+P(An),例题,某学生从5个试题中任意抽选一题,如果抽到每一题的概率为1

10、/5,则抽到试题1或试题2的概率为多少?,概率的乘法,A事件出现的概率不影响B事件出现的概率,这两个事件为独立事件。两个独立事件积的概率,等于这两个事件概率的乘积。用公式表示为:P(A B)=P(A)P(B)其推广形式是P(A1 A2 An)=P(A1)P(A2)P(An),例题,上例中,如果第一个学生把抽出的试题还回后,第二个学生再抽,则两个学生都抽第一题的概率为多少?,基础比率,假设癌症患者占总人口的比例为1%,癌症患者在X光检查中有80%呈阳性,未患癌症的人在X光检查中有10%呈阳性。现在有一个人在X光检查中呈阳性,问这个人患癌症的概率是多大?,基础比率,基础比率,在一个城市中,有两个出

11、租车公司。甲公司都是绿色车,占85%,乙公司都是蓝色车,占15%。一天晚上发生了严重车祸。有一个目击证人说是蓝色车。在相同的条件下测得该目击证人辨别蓝色车和绿色车的正确率为80%。问:肇事车是蓝色车的概率是多大?,基础比率,二项试验与二项分布,满足以下条件的试验称为二项试验:一次试验只有两种可能结果,即成功和失败;各次试验相互独立,互不影响各次试验中成功的概率相等。,问题,一个学生全凭猜测答2道是非题,则答对0、1、2题的概率是多大?如果是3道题、4道题呢?,2道是非题的情况,TTTF,FTFF,3道是非题的情况,TTTTTF,TFT,FTTTFF,FTF,FFTFFF,4道是非题的情况,TT

12、TTTTTF,TTFT,TFTT,FTTTTTFF,TFFT,FFTT,TFTF,FTTF,FTFTTFFF,FTFF,FFTF,FFFTFFFF,二项分布函数,用 n 次方的二项展开式来表达在 n 次二项试验中成功事件出现不同次数(X=0,1,n)的概率分布叫做二项分布。二项展开式的通式就是二项分布函数,运用这一函数式可以直接求出成功事件恰好出现X次的概率:,二项分布图,二项分布图,从二项分布图可以看出,当p=q,不管 n 多大,二项分布呈对称形。当 n 很大时,二项分布接近于正态分布。当 n 趋近于无限大时,正态分布是二项分布的极限。,当p.5时,设某厂产品合格率为90%,抽取3个进行检验

13、,求合格品个数分别为0,1,2,3的概率?,当p=.9,q=.1时,二项分布的平均数和标准差,当二项分布接近于正态分布时,在n次二项实验中成功事件出现次数的平均数和标准差分别为:=np和,二项分布的应用,正态分布,正态分布,正态分布概率密度函数,标准正态分布,标准正态分布函数其中 Z=(X)/,正态分布表,根据Z分数查概率根据概率查Z分数,练习题,设XN(,2),求以下概率:(1)P-X=+(2)P-3X=+3(3)P-1.96X=-(4)PX+,正态分布的简单应用,标准分数体系T=KZ+C确定录取分数线确定等级评定的人数品质评定数量化,练习题,某年高考平均分500,标准差100,考分呈正态分

14、布,某考生得到650分。设当年高考录取率为10,问该生能否被录取?,练习题答案,Z=1.5,P=.933录取分数线:500+1.28*100=628,练习题,某地区47000人参加高考,物理学平均分为57.08,标准差为18.04。问:(1)成绩在90以上有多少人?(2)成绩在8090之间有多少人?(3)60分以下有多少人?,练习题答案,(1)成绩在90以上有多少人?0.03438,1615.86(2)成绩在8090之间有多少人?0.06766,3180(3)60分以下有多少人?0.56356,26487,第五章推断统计学基本原理,抽样分布参数估计假设检验抽样分布是参数估计与假设检验的理论基础

15、,三种不同性质的分布,总体分布:总体内个体数值的次数分布。样本分布:样本内个体数值的次数分布。抽样分布:根据样本(X1,X2,Xn)所有可能的样本观察值计算出来的某一种统计量的观察值的概率分布。例如:若(X1,X2,Xn)是抽自总体X的一个容量为 n 的简单随机样本,则依据所有可能样本的观察值计算出的样本均值的分布,称为样本均值的抽样分布。,抽样方法,单纯随机抽样机械抽样分层抽样整群抽样,总体分布到抽样分布,总体X的概率分布这是一个均匀分布总体,样本(n=2)的所有可能结果,样本(n=2)的平均数的抽样分布,样本(n=2)的平均数的抽样分布图,不同总体情况下的抽样分布,抽样分布的定理,设总体X

16、服从分布F(x),(X1,X2,Xn)是抽自该总体的一个简单随机样本,总体均值与样本均值、总体方差与样本均值的方差有如下关系:,抽样分布的定理,从总体中随机抽出容量为n的一切可能样本的平均数之平均数等于总体的平均数;从总体中随机抽出容量为n的一切可能样本的平均数的方差,等于总体方差除以n,样本均值的抽样分布(2已知),若(X1,X2,Xn)是抽自总体X的一个容量为n的简单随机样本,则依据样本的所有可能观察值计算出的样本均值的分布,称为样本均值的抽样分布。,样本均值的抽样分布,定理设(X1,X2,Xn)是抽自正态分布总体XN(,2)的一个容量为n的简单随机样本,则其样本均值也是一个正态分布随机变

17、量,且有,样本均值的抽样分布,例题,某类产品的强度服从正态分布,总体平均数为100,总体标准差为5。从该总体中抽取一个容量为25的简单随机样本,求这一样本的样本均值介于99101的概率。如果容量为100呢?,样本均值的抽样分布(2已知),非正态总体、已知时设总体X的均值和2,当样本容量趋向无穷大时,样本均值的抽样分布趋于正态分布,且样本均值的数学期望和方差分别为,例题,某类产品的强度不服从正态分布,总体平均数为100,总体标准差为5。从该总体中抽取一个容量分别为25的简单随机样本,求这一样本的样本均值介于99101的概率。如果容量为100呢?,参数估计,用样本统计量的来估计相应总体参数,称为参

18、数估计判断估计量优劣的标准无偏性有效性一致性充分性,参数估计的基本方式,点估计用某一样本统计量的值来估计相应总体参数的值叫总体参数的点估计。区间估计以样本统计量的抽样分布(概率分布)为理论依据,按一定概率要求,由样本统计量的值估计总体参数值的所在范围,称为总体参数的区间估计。,区间估计,示意图,区间估计的基础抽样分布,根据抽样分布的原理,可得到不同条件下总体参数的区间估计的计算方法区间估计涉及置信水平和置信区间。,例题,某种零件的长度服从正态分布。已知总体标准差=1.5厘米。从总体中抽取100个零件组成样本,测得它们的平均长度为10.00厘米。试估计在95%置信水平下,全部零件平均长度的置信区

19、间。,假设检验,假设检验回答的问题某总体平均水平有无显著变化?两总体平均水平有无显著差异?多个总体平均水平有无显著差异?两个或多个总体方差有无显著差异?以上:参数假设检验某总体是否服从正态分布(或其他分布)?某串数据是否随机?以上:非参数假设检验,非参数假设检验举例,单样本游程检验某食堂窗口前排队性别规律性:F M F M F F F F F M M M F F M MF M F M F M F M F M F M F M F MF F F F F F F F M M M M M M M MM M M M M M M M F F F F F F F F,F M F M F F F F F M

20、M M F F M MF M F M F M F M F M F M F M F MF F F F F F F F M M M M M M M MM M M M M M M M F F F F F F F F,假设检验,利用样本信息根据一定概率对总体参数或分布的某一假设作出拒绝或保留的决断称为假设检验,假设,有两个相互对立的假设即零假设(或称原假设、虚无假设、解消假设)备择假设(或称研究假设、对立假设)假设检验是从零假设出发,视其被拒绝的机会,从而得出决断。,假设检验,示意图,显著性水平,拒绝零假设的概率称为显著性水平。显著性水平和可靠性程度(置信水平)之间的关系是:两者之和为1。,双侧检验与

21、单侧检验,双侧检验:零假设为无显著差异的情况;左侧检验:零假设为大于等于的情况;右侧检验:零假设为小于等于的情况。,例题,某小学历届毕业生汉语拼音测验平均分数为66分,标准差为10分。现以同样的试题测验应届毕业生(假定应届与历届毕业生条件基本相同),并从中随机抽取25份试卷,算得平均分为69分,问该校应届与历届毕业生汉语拼音测验成绩是否一样?,统计决断的两类错误,第一类型的错误错误拒绝了属于真实的零假设。这种错误的可能性大小正是显著性水平的大小水平未变而认为有显著差异第二类型的错误 错误保留了属于不真实的零假设水平显著差异而认为无显著差异,第六章相关,相关的意义积差相关等级相关质与量的相关,相

22、关的意义,相关的概念两个变量之间不精确、不稳定的变化关系称为相关关系。相关系数用来描述两个变量相互之间变化方向及密切程度的数字特征量称为相关系数。一般用 r 表示。,正相关,负相关,零相关,相关系数,相关系数的值,仅仅是一个比值,不等距),也不是百分比,因此,不能直接作加、减、乘、除。相关不等于因果:相关系数只能描述两个变量之间的变化方向及密切程度,并不能揭示二者之间的内在本质联系。,积差相关,积差相关的概念当两个变量都是正态连续变量,而且两者之间呈线性关系,表示这两个变量之间的相关称为积差相关。,积差相关系数的定义和计算,协方差是积差相关系数的基础,它是两个变量离差乘积之和除以n所得之商。其

23、公式为:,积差相关系数的定义和计算,积差相关系数是协方差除以两个变量的标准差。其公式为:用原始数据直接计算,则,例题,为研究某测验的预测效度,在被录取的高考考生中随机抽取10人,测得他们的能力测验得分(X),对他们进行跟踪研究,求得他们大学一、二年级有关科目平均分数(Y),求该测验的效度。,等级相关,等级相关是指以等级次序排列或以等级次序表示的变量之间的相关。斯皮尔曼等级相关肯德尔和谐系数,斯皮尔曼等级相关,概念及其适用范围当两个变量值以等级次序排列或以等级次序表示时,两个相应总体并不一定呈正态分布,样本容量也不一定大于30,表示这两个变量之间的相关,称为斯皮尔曼等级相关。,斯皮尔曼等级相关系

24、数的计算,例题,为了研究儿童问题行为与母亲耐心程度的关系,抽取10个家庭,让儿童与其母亲一起完成一件需要相互配合才能完成的工作,观测并纪录他们的表现。下表为儿童问题程度分数(X)与母亲的不耐心程度分数(Y),分数值越大表明问题或不耐心程度越大。请计算两者之间相关系数?,例题,相关系数:0.72,肯德尔和谐系数,当多个(两个以上)变量值以等级次序排列或以等级次序表示,这几个变量之间的一致性程度(即相关),称为肯德尔和谐系数。,例题,肯德尔和谐系数的计算,无相同等级的情况,肯德尔和谐系数的计算,有相同等级的情况,质与量的相关,质与量的相关是指一个变量为质,另一个变量为量,这两个变量之间的相关。,双

25、列相关,概念及其适用范围当两个变量都是正态连续变量,其中一个变量被人为地划分成二分变量,表示这两个变量之间的相关,称为双列相关。双列相关的使用条件是:(1)两个变量都是连续变量,且总体呈正态分布,或接近正态分布,至少是单峰对称分布。(2)两个变量之间是线性关系(3)二分变量是人为划分的,其分界点应尽量靠近中值。(4)样本容量应大于80。,双列相关相关系数的计算,点双列相关,概念及其适用范围当两个变量其中一个是正态连续性变量,另一个是真正的二分名义变量,这时,表示这两个变量之间的相关,称为点双列相关。有时一个变量虽然并非真正的二分变量,而是双峰分布的变量,也可以用点双列相关来表示。,点双列相关系数的计算,例题,根据下表求问答题的区分度,例题,根据下表求选择题的区分度,例题答案,问答题的区分度:0.640选择题的区分度:0.372,多系列相关,概念及其适用范围当两个变量都是正态连续变量,其中一个变量按不同质被人为地分成多种类别(两类以上)的正态名义变量。表示正态连续变量与多类正态名义变量之间的相关,称为多系列相关。,

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 生活休闲 > 在线阅读


备案号:宁ICP备20000045号-2

经营许可证:宁B2-20210002

宁公网安备 64010402000987号