《微生物遗传》PPT课件.ppt

上传人:小飞机 文档编号:5583472 上传时间:2023-07-30 格式:PPT 页数:101 大小:1.28MB
返回 下载 相关 举报
《微生物遗传》PPT课件.ppt_第1页
第1页 / 共101页
《微生物遗传》PPT课件.ppt_第2页
第2页 / 共101页
《微生物遗传》PPT课件.ppt_第3页
第3页 / 共101页
《微生物遗传》PPT课件.ppt_第4页
第4页 / 共101页
《微生物遗传》PPT课件.ppt_第5页
第5页 / 共101页
点击查看更多>>
资源描述

《《微生物遗传》PPT课件.ppt》由会员分享,可在线阅读,更多相关《《微生物遗传》PPT课件.ppt(101页珍藏版)》请在三一办公上搜索。

1、微生物遗传与变异,要点:1、细菌基因重组的原理和方法。2、真菌基因重组的原理和方法。3、微生物诱变育种的原理和方法。4、基因工程的基本原理5、基因表达的调控重点:细菌的基因重组难点:低频转导,高频转导,准性生殖,第一节 遗传的物质基础,第二节 微生物的基因组结构,第四节 真核微生物的基因重组,第三节 原核微生物的基因重组,第五节 基因突变和诱变育种,第六节 微生物与基因工程,三个经典实验的原理与方法,朊病毒的概念,原核及真核微生物基因组的基本特征,基因突变的规律,三种基因水平转移方式及其应用,准性生殖,基因工程的基本过程和基本技术,遗传:,亲代与子代相似,变异:,亲代与子代、子代间不同个体不完

2、全相同,遗传(inheritance)和变异(variation)是生命的最本质特性之一,遗传型:(genotype),表型:(phenotype),决定生物表现型的遗传因子,具有一定遗传型的个体,在特定环境条件下通过生长发育所表现出来的外表特征和内在特征的总和。,表型是由遗传型所决定,但也和环境有关。,遗传型环境条件,表型,表型饰变:,同样遗传型的生物在不同外界条件下显现的不同表现型的变异,不涉及遗传物质结构改变特点:暂时性、不可遗传性、表现为全部个体的行为,遗传型改变引起的表型变化,发生在基因水平上,可以遗传给子代。特点:遗传性、群体中极少数个体的行为(自发突变频率通常为10-6-10-9

3、),遗传型变异(基因突变):,第一节 遗传的物质基础,一.证明核酸是遗传物质的经典实验1928年,F.Griffith;1944年O.T.Avery 肺炎链球菌(Streptococcus pneumoniae)转化试验。1952年,A.D.Hershy、M.Chase的噬菌体感染实验。1956年,H.Fraenkel-Conrat的TMV拆开和重建实验。,1、经典转化实验肺炎链球菌:S型(菌体具荚膜,菌落表面光滑,有致病能力)R型(菌体无荚膜,菌落表面粗糙,无致病能力),加S菌DNA加S菌DNA及DNA酶以外的酶加S菌的DNA和DNA酶加S菌的RNA加S菌的蛋白质加S菌的荚膜多糖,活R菌,长

4、出S菌,只有R菌,1944年Avery、MacLeod和McCarty从热死S型S.pneumoniae中提纯了可能作为转化因子的各种成分,并在离体条件下进行了转化试验:,只有S型细菌的DNA才能将S.pneumoniae的R型转化为S型。且DNA纯度越高,转化效率也越高。说明S型菌株转移给R型菌株的,是遗传因子DNA。,2、噬菌体感染实验,进入细菌细胞内部的物质是DNA。DNA包含有产生完整噬菌体的全部信息。,3、植物病毒TMV重建实验,TMV的遗传物质是RNA。,结论:,证明核酸(DNA或RNA)是遗传的物质基础简单的细菌(或病毒)解决复杂而重大的问题微生物与高等生物具有共同的遗传本质,朊

5、病毒的发现和思考:,朊病毒一种具有传染性的蛋白质致病因子,蛋白质是遗传物质吗蛋白质折叠与功能的关系,是否存在折叠密码?,?,已知的传染性疾病的传播因子必须含有核酸,真核生物DNA分子与组蛋白结合构成染色体,每条染色体有单一线性双链DNA分子。一个真核生物细胞内有多条染色体(脉孢菌7条,人23条)。高等生物中有2至多套染色体(动物2倍,水稻4倍),真菌有双倍体,但多数微生物是单倍体。真核细胞核物质外有核膜包围,形成完整细胞核。原核生物DNA不与组蛋白结合,染色体仅由一条DNA组成,DNA为共价闭合环状双链,一个细胞内只有一条染色体(单倍体haploid)。无核膜包围,只在细胞中央形成核区。质粒p

6、lasmid和转座因子原核生物中,除染色体以外,能够自主复制的共价闭合环状DNA分子。它们携带少量遗传基因,决定细胞的某些性状,并非细菌生活必需。,二、遗传物质在微生物细胞内存在的部位和形式一)遗传物质在微生物细胞中的存在方式,真核微生物:细胞核原核微生物:核区细胞核或核区的数目在不同的微生物中是不同的,(二)遗传物质存在的部位,细胞核水平真核生物 细胞核 核染色体原核生物 核区 DNA链,核基因组,在核基因组之外,还存在各种形式的核外遗传物质,核外染色体,真核生物的“质粒”原核生物的质粒,线粒体细胞质基因叶绿体(质体)中心体动 体共生生物:卡巴颗粒酵母菌的2m质粒,F因子R因子Col质粒Ti

7、质粒巨大质粒降解性质粒,核基因组,遗传物质类型,(三)转座因子(transposible element),细胞中能改变自身位置(例如从染色体或质粒转移到另一个位点,或者在两个复制子之间转移)的一段DNA序列。也称跳跃基因(jumping gene)或可移动基因(movable gene)。,插入序列(insertion sequence,IS),转座子(transposon,Tn),某些病毒(Mu噬菌体),原核生物的转座因子:,转座因子,40年代McClintock在玉米中发现了转座子即跳跃基因,自1967年以来,已在微生物和其它生物中得到普遍证实。新发现:有些DNA片段不但可在染色体上移动

8、,还可从一个染色体跳到另一个染色体,从一个质粒跳到另一个质粒或染色体,甚至还从一个细胞转移到另一个细胞。在这些DNA顺序的跳跃过程中,往往导致DNA链的断裂或重接,从而产生重组交换或使某些基因启动或关闭,结果导致突变的发生。,转座因子的种类(1),插入序列(IS,insertion sequence):分子量最小(仅),只能引起转座(transposition)效应而不含其它基因。可以在染色体、F因子等质粒上发现它们。已知的IS有5种,即 IS1、IS2、IS3、IS4和IS5。因IS在染色体上插入的位置和方向的不同,其引起的突变效应也不同。IS引起的突变可回复,其原因可能是IS被切离,如果因

9、切离部位有误而带走IS以外的一部分DNA序列,就会在插入部位造成缺失,从而发生新的突变。,转座因子的种类(2),转座子(Tn,transposon,又称转位子,易位子)与IS和Mu噬菌体相比,Tn的分子量居中(一般为225kb)。它含有几个至十几个基因,其中除了与转座有关的基因外,还含有抗药基因或乳糖发酵基因等其它基因。Tn虽能插到受体DNA分子的许多位点上,但这些位点似乎也不完全是随机的,其中某些区域更易插入。,特征:在两端有IR序列,分两类:型Compound transposons:两端为插入序列IS,抗性基因居中。如Tn5、Tn9、Tn10、Tn4001、Tn4003。型Complex

10、 transposons:两端为IR(30-50bp),中间为转座基因和抗性基因。如Tn1、Tn3、Tn21、Tn1721、Tn551。,转座子 transposon,转座因子的种类(3),Mu噬菌体(即 mutator phage,诱变噬菌体)是E.coli的一种温和噬菌体。与必须整合到宿主染色体特定位置上的一般温和噬菌体不同,Mu噬菌体并没有一定的整合位置。与IS和Tn相比,Mu噬菌体的分子量最大37kb,含有20多个基因。引起的转座可以导致插入突变,其中约有2%是营养缺陷型突变。,转座的遗传学效应:,1)插入突变,2)产生染色体畸变,3)基因的移动和重排,四)质粒,1、致育因子(Fert

11、ility factor,F因子),3、产细菌素的质粒(Bacteriocin production plasmid),2、抗性因子(Resistance factor,R因子),4、毒性质粒(virulence plasmid),5、代谢质粒(Metabolic plasmid),6、隐秘质粒(cryptic plasmid),五)基因的表达以DNA为模板,通过RNA聚合酶转录出mRNA,然后将mRNA包含的碱基顺序在核糖体中翻译成相应氨基酸序列的多肽。转录(transcription)双链DNA单链,以其中一条为模板互补mRNA翻译(translation)mRNA 多肽,DNARNA肽链

12、蛋白质,五)基因的表达,第二节:微生物的基因组结构,明确基因组的概念,微生物在人类基因组计划中的独特而重要的地位;人类基因组计划对微生物学发展的影响;三种代表性微生物基因组结构的特点,特别强调古生菌基因组的独特性及双重特征;随着基因组全序列测定微生物的增多所发现的新问题:水平基因转移现象 Woese系统发育树面临的挑战,微生物基因组结构的特点,1、原核生物(细菌)的基因组,1)染色体为双链环状的DNA分子(单倍体);2)基因组上遗传信息具有连续性;基因数基本接近由它的基因组大小所估计的基因数 一般不含内含子,遗传信息是连续的而不是中断的。3)功能相关的结构基因组成操纵子结构;4)结构基因的单拷

13、贝及rRNA基因的多拷贝;5)基因组的重复序列少而短.,基因组genome:一种生物的全套基因。,2、真核微生物(啤酒酵母)的基因组,1)典型的真核染色体结构;啤酒酵母基因组大小为13.5106bp,分布在16条染色体中。2)没有明显的操纵子结构;3)有间隔区(即非编码区)或内含子序列;4)最显著的特点是重复序列多.,第一个完成基因组测序的真核生物基因组,基因组上有许多较高同源性的 DNA 重复序列,这是一种进化。即可在少数基因发生突变而失去功能时不会影响生命过程,也可适应复杂多变的环境,丰余的基因可在不同的环境种起用多个功能相同或相似的基因产物,有备无患。酵母菌确实比细菌和病毒进步而富有,而

14、细菌和病毒似乎更聪明,能更经济更有效地利用遗传资源。,2、古生菌(詹氏甲烷球菌)的基因组,第一个完成基因组测序的古生菌,只有40的基因与其他两界的生物有同源性古生菌的基因组在结构上类似于细菌 1.66x106bp的环状染色体DNA 1682个ORF(Open Reading Frame)3)负责信息传递功能的基因(复制、转录和翻译)则类似于真核生物,ORF(Opening reading frame),任何一种生物的基因组,都是由不编码和编码蛋白质的核苷酸序列(基因)所组成。基因通常只是基因组的一小部分.一个基因组拥有的“基因”数目是由两部分组成的:通过实验证明确有蛋白质产物的真实基因、根据起

15、始密码和终止密码序列所确定的潜在基因。生物学家们把这两类基因都称为“开放阅读框”()。因此,一个基因组内的基因数目通常是指的数目。,克隆clone不经过有性细胞的结合,由体细胞发育成新个体,即无性繁殖。基因重组gene recombination两个不同来源的遗传物质进行交换,经过基因的重新组合,形成新的基因型的过程。重组获得的后代具有新的基因组合,表现出不同于亲本的新性状。原核微生物没有有性生殖,其基因重组通过转化、接合、转导方式进行。,第三节 原核微生物的基因重组,一、细菌的接合作用(conjugation),通过细胞与细胞的直接接触而产生的遗传信息的转移和重组过程,1.实验证据,接合(c

16、onjugation)通过供体菌与受体菌间细胞接触而传递大段DNA,1946年,Joshua Lederberg 和Edward L.TatumE.coli k12的多重营养缺陷型杂交实验,中间平板上长出的原养型菌落是两菌株之间发生了遗传交换和重组所致。,F因子,大肠杆菌是有性别分化的。决定它们性别的因子称为F因子(致育因子或称性质粒),呈超螺旋状态,既可以在细胞内独立存在,具有自主的与染色体进行同步复制和转移到其他细胞中的能力,也可插入(即整合)到染色体上,F因子的四种细胞形式:,a)F-菌株(“雌性”菌株),不含F因子,没有性菌毛,但可以通过接合作用接收F因子而变成F+菌株;b)F+菌株(

17、“雄性”菌株),F因子独立存在,细胞表面有性菌毛。c)Hfr菌株,F因子插入到染色体DNA上,细胞表面有性菌毛。d)F菌株,Hfr菌株内的F因子因不正常切割而脱离染色体时,形成游离的但携带一小段染色体基因的F因子,特称为F因 子。细胞表面同样有性菌毛。,F+菌株含F质粒,细胞表面产生性毛(sex pili),与F-细胞相连,在接合后转移DNA。F-菌株无F质粒,不产生性毛,可接受外来F质粒。,Hfr菌株高频重组菌株(high frequency recombination)。与F-接合后,重组频率比F+高几百倍。在Hfr细胞中,存在与染色体特定位点相整合的F因子(产生频率约10-5)。当它与F

18、-菌株发生接合时,Hfr染色体在F因子处发生断裂,由环状变成线状。整段线状染色体转移至F-细胞的全过程约需100 min。在转移时,由于断裂发生在F因子中,所以必然要等Hfr的整条染色体组全部转移完成后,F因子才能完全进入F-细胞。但转移过程中断,所以越在前端的基因,进入的机会就越多,故在F-中出现重组子的时间就越早,频率也高。,F菌株当Hfr菌株内的F因子因不正常切割而脱离其染色体组时,可形成游离的携带一小段染色体基因的F因子,特称F因子。携带有F因子的菌株,其性状介于F+与Hfr之间,这就是初生F菌株。初生F菌株与F-菌株接合,可使后者转变成F菌株,这就是次生F菌株,它既获得了F因子,又获

19、得了来自初生F菌株的若干遗传性状。以这种接合来传递供体菌基因的方式,称为F因子转导(F-duction)、性导(sexduction)。在次生的F群体中,大约有10%的F因子重新整合到染色体组上,而恢复成Hfr菌。,1)F+F-杂交,1)F+细菌通过性毛与F-细菌接触并发生相互作用;2)F因子出现缺口,双链之一被切断,从断端转移F因子的一条链到F-细菌中。3)F因子的一条链一进入F-细菌中,在F-细菌中复制新的 F因子从而变成F+4)原有F+细胞也完成F因子另一条链的复制,所以转移是F+的拷贝。,F+F+,Hfr菌株的F因子插入到染色体DNA上,因此只要发生接合转移过程,就可以把部分甚至全部细

20、菌染色体传递给F-细胞并发生重组,由此而得名为高频重组菌株,2)Hfr F-杂交,Hfr菌株仍然保持着F+细胞的特征,具有F性菌毛,并象F+一样与F-细胞进行接合。所不同的是,当OriT序列被缺刻螺旋酶识别而产生缺口后,F因子的先导区(leading region)结合着染色体DNA向受体细胞转移。F因子除先导区以外,其余绝大部分是处于转移染色体的末端,由于转移过程常被中断,因此F因子不易转入受体细胞中。HfrF-杂交后的受体细胞(或接合子)大多数仍然是F-。染色体上越靠近F因子的先导区的基因,进入的机会就越多,在F-中出现重组子的的时间就越早,频率也高。,Hfr F-,3)FF-杂交,FF-

21、与F+F-的不同:供体的部分染色体基因随F一起转入受体细胞a)与染色体发生重组;b)继续存在于F因子上,形成一种部分二倍体,细胞基因的这种转移过程又常称为性导(sexduction)。,F F,1、普遍性转导(generalized transduction),(1)意外的发现,1951年,Joshua Lederberg和Norton Zinder为了证实大肠杆菌以外的其它菌种是否也存在接合作用,用二株具不同的多重营养缺陷型的鼠伤寒沙门氏菌进行类似的实验:,用“U”型管进行同样的实验时,在给体和受体细胞不接触的情况下,同样出现原养型细菌!,二、细菌的转导(transduction),1952

22、 年Zinder 和 Lederberg 在验证Salmonella typhimurium是否也存在接合现象时发现了转导现象。S.typhimurium:LT22A(trp-);LT2(his-)LT22溶原性噬菌体P22 感染LT2(非溶原性)可能释放带trp+的P22LT22A(trp-)呈原养型。,沙门氏菌LT22A是携带P22噬菌体的溶源性细菌,另一株是非溶源性细菌,一个表面看起来的常规研究却导致一个惊奇和十分重要发现的重要例证!,基因的传递很可能是由可透过“U”型管滤板的P22噬菌体介导的,(普遍性转导这一重要的基因转移途径的发现),Why and How?,(二)转导(trans

23、duction),转导:由病毒介导的细菌细胞间进行遗传交换的一种方式 一个细胞的DNA或RNA通过病毒载体的感染转移到另一个细胞中。,细菌转导的类型:,普遍转导,局限转导,完全转导流产转导,低频转导高频转导,转导噬菌体:能将细菌宿主的部分染色体和质粒DNA带到另一个细菌的噬菌体。获得了由噬菌体携带来的供体菌DNA片段的受体细胞称为转导子。在转导中被转移的染色体片段称为转导因子。,普遍转导(generalized transduction),噬菌体可以转导供体菌染色体的任何部分到受体细胞中,普遍性转导的三种后果:,外源DNA被降解,转导失败。,进入受体的外源DNA通过与细胞染色体的重组交换而形成

24、稳定的转导子,流产转导,完全转导complete transduction:形成了遗传性稳定的转导子(transductant),普遍转导(generalized transduction)噬菌体可误包供体菌中的任何基因(包括质粒),并使受体菌实现各种性状的转导,转导DNA不能进行整合、重组和复制,但其携带的基因可经过转录而得到表达。因此群体中仅一个细胞含有DNA,而其它细胞只能得到其基因产物。,流产转导:,局限转导:,温和噬菌体感染,整合到细菌染色体的特定位点上宿主细胞发生溶源化,溶源菌因诱导而发生裂解时,在前噬菌体二侧的少数宿主基因因偶尔发生的不正常切割而连在噬菌体DNA上,部分缺陷的温和

25、噬菌体,把供体菌的少数特定基因转移到受体菌中,局限转导specialized transduction当溶原菌群经诱导后,其中极少数前噬菌体从宿主染色体脱落时产生错误切割,从而把宿主的某些基因(前噬菌体位点两端是细菌染色体的gal和bio,故形成的转导噬菌体通常带有ga1或bio)整合到噬菌体的基因组上,当这样的噬菌体侵染另一宿主菌时,噬菌体 DNA 与受体菌的 DNA 同源区段配对,通过双交换而整合到受体菌的染色体组上,使受体菌获得了供体的这部分遗传特性,而形成转导子(缺陷溶源菌)。,局限转导与普遍转导的主要区别:,a)局限转导中被转导的基因共价地与噬菌体DNA连接,与噬菌体DNA一起进行复

26、制、包装以及被导入受体细胞中。而普遍性转导包装的可能全部是宿主菌的基因。,b)局限性转导颗粒携带特定的染色体片段并将固定的个别基因导入受体,故称为局限性转导。而普遍性转导携带的宿主基因具有随机性。,溶源转变(lysonenic conversion)当温和噬菌体感染其宿主而使之发生溶源化时,因噬菌体的基因整合到宿主的基因组上,而使后者获得了除免疫性以外的新性状的现象。当宿主丧失这一噬菌体时,通过溶源转变而获得的性状也同时消失。溶源转变与转导有本质上的不同,首先是它的温和噬菌体不携带任何供体菌的基因;其次,这种噬菌体是完整的,而不是缺陷的。典型例子:不产毒素的白喉棒杆菌(Corynebacter

27、ium diphtheriae)菌株在被噬菌体感染而发生溶源化时,会变成产白喉毒素的致病菌株。,低频转导与高频转导,低频转导:当用噬菌体转导发酵乳糖的基因时,约10-6 被感染的细菌中出现一个转导子。即大约10-6 噬菌体中只有一个带有发酵乳糖的基因。高频转导:当噬菌体整合到寄主细胞后,带有发酵乳糖基因的噬菌体也整合到寄主染色体上,成为双重溶源化细胞。这种细菌用紫外线诱导时,非转导的和转导的噬菌体同时脱离细胞染色体而复制繁殖,两个噬菌体中就有一个带有发酵乳糖的基因。用这种细胞释放的噬菌体转导发酵乳糖基因,就可以得到50的转导子。,供体菌,受体菌,DNA片段,转化:指同源或异源的游离DNA分子(

28、质粒和染色体DNA)被自然或人工感受态细胞提取,并得到表达的水平方向的基因转移过程。这些被转化的游离的DNA片段称为转化因子。转化后的受体菌,称为转化子。,1928年,Griffith发现肺炎链球菌(Streptococcus pneumoniae)的转化现象,目前已知有二十多个种的细菌具有自然转化的能力,三、细菌的遗传转化(genetic transformation),感受态细胞:受体菌最容易接受外源DNA片段并实现转化的 生理状态称为感受态。,转化需要二方面必要条件:,1、建立了感受态的受体细胞,2、外源游离DNA分子(转化因子),自然感受态是细胞一定生长阶段的生理特性,受细菌 自身的基

29、因控制;人工感受态则是通过人为诱导的方法,使细胞具有摄取DNA 的能力,或人为地将DNA导入细胞内,转化因子通常是双链DNA。,转化过程:,感受态的出现 转化因子的吸附与掺入 转化因子的整合,噬菌体DNA被感受态细胞摄取并产生有活性的病毒颗粒,转染(transfection):,转染的特点:提纯的噬菌体DNA以转化的(而非感染)途径进入细胞并表达后产生完整的病毒颗粒。,人工转化:,用CaCl2处理细胞,电穿孔等是常用的人工转化手段。,在自然转化的基础上发展和建立的一项细菌基因重组手段,不是由细菌自身的基因所控制,是基因工程的奠基石和基础技术。,用多种不同的技术处理受体细胞,使其人为地处于一种可

30、以摄取外源DNA的“人工感受态”。,电穿孔法(electroporation):用高压脉冲电流击破细胞膜形成小孔,使各种大分子(包括DNA)能通过这些小孔进入细胞,所以又称电转化。,五.原生质体融合,将遗传性状不同的两种菌(包括种间、种内及属间)原生质体融合成为一个新的重组子的技术。,原生质体融合步骤:,1、原生质体制备2、原生质体融合和再生3、融合子的选择,微生物细胞融合的研究始于1976年。主要过程:先准备两个有选择性遗传标记的突变株,在高渗溶液中,用适当的脱壁酶去除细胞壁,再将形成的原生质体离心聚集,并加入促融合剂PEG(聚乙二醇)促进融合,然后在高渗溶液中稀释,涂在能使其再生细胞壁或进

31、行分裂的培养基上,待形成菌落后,通过影印接种法,将其接种到各种选择性培养基上,最后鉴定它们是否是重组子。,杂交是在细胞水平上发生的一种遗传重组方式。有性杂交:指性细胞间的接合和随之发生的染色体重组,并产生新遗传型后代的一种方式。,(一)有性杂交,第四节 真核微生物的基因重组,能产生有性孢子的酵母菌、霉菌和蕈菌都可以进行有性杂交,(二)准性杂交,准性生殖是指真菌中不通过有性生殖的基因重组过程。它类似于有性生殖,但比之更原始的一种生殖方式,它可使同一生物的两个不同来源的体细胞经融合后,不通过减数分裂而导致低频率的基因重组。在半知菌类中最为常见。,2、异核体形成,1、菌丝联合,3、核配,4、体细胞交

32、换和单倍体化,准性生殖的过程:,杂合二倍体只有相对的稳定性,在其繁殖过程中虽不进行减数分裂,但在有丝分裂中可以发生染色体交换和染色体单倍化,从而形成各种分离子。,第五节 基因突变和诱变育种,基因突变:一个基因内部遗传结构或DNA序列的任何可 遗传的改变。,野生型(原始性状),基因突变,突变型(新性状),一、基因突变的定义,自发突变:在自然条件下发生的基因突变。,诱发突变:利用物理化学因子处理微生物使其产生的突变。,回复突变:突变菌株发生突变,回复到出发菌株的状态。,基因突变分为,二、基因突变的类型,同义突变:碱基的变化没有改变产物氨基酸序列的变化。,错义突变:碱基序列的变化引起产物氨基酸的变化

33、。,无义突变:碱基的改变是密码子变为终止密码子。,移码突变:碱基的缺失或插入使翻译的阅读框发生改变,从而使氨基酸序列完全变化。,不同的碱基变化对遗传信息的改变不同:,常见的微生物突变类型:,1、营养缺陷型(auxotroph),特点:,在选择培养基(一般为基本培养基)上不生长,负选择标记,(突变株不能通过选择平板直接获得),缺乏合成其生存所必需的营养物的突变型。,2、抗药性突变型(resistant mutant),由于基因突变使菌株对某种或某几种药物,特别是抗生素,产生抗性的突变型。,3、条件致死突变型(conditional lethal mutant),在某一条件下具有致死效应,而在另一

34、条件下没有致死效应的突变型。,4、形态突变型(morphological mutant),指造成形态改变的突变型。,5、其他突变型,如毒力、糖发酵能力、代谢产物的种类和产量以及对某种药物的依赖性突变型等。,1)自发性 2)不对应性 3)稀有性 4)规律性,三、基因突变的机制,5)独立性 6)可诱变性 7)遗传性 8)可逆性,1、基因突变的特点:,基因突变的自发性和非对应性的证明一种观点认为,突变的原因和突变的性状间是相对应的,并认为这就是“定向变异”、“驯化”。另一种观点认为,基因突变是自发的。,如何证明基因突变的非对应性?,三个经典实验变量实验、涂布实验、影印实验1943年S.E.Luria

35、与M.Dlbruck进行了Fluctuation test1949年H.B.Newcombe的Respreding plated incubacion1952年J.Lederberg夫妇用Replica-plating结束了争论,证明突变的性状与引起突变的原因间无直接对应关系!,2、自发突变的机制,主要的原因是:碱基互变异构体的存在导致形成不同 的碱基配对。,腺嘌呤氨基式 AT配对,腺嘌呤亚氨基式 AC配对,结果:导致AT GC,碱基置换:碱基与碱基之间的交换导致突变的发生 转换:嘌呤到嘌呤或嘧啶到嘧啶的碱基置换。颠换:嘌呤到嘧啶或嘧啶到嘌呤的碱基置换。,3、诱发突变的机制(1)碱基的置换(转

36、换、颠换)碱基对置换substitution转换transition颠换transversion,(2)移码突变frame-shift mutant:添加或缺失核 苷酸,引起阅读错误,(3)染色体畸变chromosomal aberration:缺失、重复、插入、易位、倒位,A、碱基类似物-5-BU尿嘧啶引起碱基的转换,5溴尿嘧啶(胸腺嘧啶结构类似物),4、诱变剂,B、插入染料,C、与DNA碱基直接起化学反应的诱变剂亚硝酸引起DNA的碱基转换,D、辐射和热,嘧啶,嘧啶二聚体,UV,“生物化学统一性”法则:,人和细菌在DNA的结构及特性方面是一致的,能使微生物发生突变的诱变剂必然也会作用于人的D

37、NA,使其发生突变,最后造成癌变或其他不良的后果,所有生物的DNA在结构及特性上具有一致性,让细菌代人受过!,Ames试验:,利用细菌模型了解潜在化学致癌物的诱变作用,美国加利福尼亚大学Bruce Ames教授于1966年发明具体操作:检测鼠伤寒沙门氏菌(Salmonella typhmurium)组氨酸营养缺陷型菌株(his-)的回复突变率回复突变:突变体失去的野生型性状,可以通过第二次突变得到恢复,这种第二次突变称为回复突变,Ames试验,Ames试验,四、DNA损伤的修复,1、光复活作用,嘧啶二聚体,嘧 啶,光解酶,2、切除修复,3、重组修复,4、SOS修复,DNA分子受到较大范围的重大

38、损伤时诱导产生的一种应急反应。,错误倾向的SOS修复,第七节 微生物与基因工程,了解微生物学在基因工程技术的建立与发展中的重要意义,了解并掌握基因工程的基本过程和基本技术。,1.基因工程概述(微生物学与基因工程的关系)2.微生物与基因工程工具酶(限制性内切酶的基本概念及其在基因操作技术中的最基本应用)3.微生物与克隆载体(克隆载体的基本要求,了解目前有哪些克隆得到应用,它们各有什么特点和联系(异同点)。重点掌握质粒和噬菌体克隆载体)4.微生物作为克隆载体的宿主(为什么微生物通常能成为基因工程的重要宿主,最常用的有哪些?)5.基因工程的常用技术和方法(重点介绍PCR技术,原理与方法),第七节 微

39、生物与基因工程,一、基因工程,基因工程:在基因水平上,改造遗传物质,即将分离到的或合成的基因经过改造,插入载体中,导入宿主细胞内,使其扩增和表达,从而获得大量基因产物,或者令生物表现出新的性状。,克隆载体(cloning vector)负责将外源DNA片段运送到细胞中进行复制与扩增。,微生物学与基因工程的关系,微生物学不仅为基因工程提供了理论基础,同时也提供了操作技术。,基因工程概述,基因工程gene engineering人工将供体的遗传物质-DNA 在离体条件下用适当的工具酶进行切割,把它与载体(vector)的 DNA 分子连接,然后与载体一起导入某一受体细胞中,让外源遗传物质进行正常的

40、复制和表达,从而获得新物种的一种崭新的育种技术。,过程基因分离:体外重组:外源DNA与载体连接载体传递:导入受体,使外源DNA在受体中表达复制、表达筛选、繁殖:对重组后的大量重组子性状进行筛选,从中选出所需性状重组子,并使之稳定繁殖。,获得目的基因选择基因载体体外重组外源基因导入(细菌、植物、动物、基因枪)筛选和鉴定应用,二、基因工程的基本操作,微生物在基因工程中的作用:1.微生物作为克隆载体:质粒、病毒、噬菌体 2.微生物生产基因工程工具酶;1)限制性核酸内切酶 2)DNA连接酶 3.微生物作为克隆载体的宿主 1)原核生物宿主 大肠杆菌,枯草芽孢杆菌 2)真核生物宿主 酿酒酵母 4.微生物作

41、为基因产物的重要表达载体。5.理论基础(主要来自对微生物的研究)6.微生物的多样性提供了丰富而独特的基因资源。,2.微生物与基因工程工具酶,基因工程所用到的绝大多数工具酶都是从不同微生物中分离和纯化而获得,限制性核酸内切酶(restriction endonuclease),DNA聚合酶,碱性磷酸脂酶,核酸外切酶,单链核酸内切酶,其它工具酶:,指能识别双链DNA分子的特定序列,并在识别位点或其附近切割DNA的一类核酸内切酶。,质粒载体,噬菌体载体,柯斯质粒载体,M13噬菌体载体,真核细胞的克隆载体,人工染色体,噬菌粒载体,3.微生物与克隆载体,常用的基因工程宿主,1)大肠杆菌,3)酿酒酵母,2

42、)枯草芽孢杆菌,特点:生长迅速、极易培养、能在廉价培养基中 生长,遗传学及分子生物学背景十分清楚,4)动物细胞,4.微生物作为克隆载体的宿主,DNA的体外扩增 穆利斯发明了聚合酶链式反应(polymerase chain reaction,PCR),这是一种在体外模拟细胞内进行的快速扩增特定DNA序列的新技术。PCR扩增的条件:DNA摸板引物 脱氧核苷三(dNTP)磷酸DNA聚合酶扩增缓冲液 钙离子,基因工程的常用技术和方法,PCR 3个基本反应步骤:1、变性(denaturation)2、退火(annealing)3、延伸(extension),DNA的体外扩增,引物(primer):与目的

43、DNA片段末端互补的寡核苷酸片段。TaqDNA聚合酶:从水生栖热菌(Thermus aquaticus)中分离得 到的耐热的DNA聚合酶。,基本反应:,1)变性 加热,模板DNA经热变性,双链被解开,成为两条 单链2)退火 温度降低,寡核苷酸引物与模板DNA配对3)延伸 在适宜条件下,引物3,端向前延伸,合成与模板互补的DNA链,性状稳定的菌种是微生物学工作最重要的基本要求,否则生产或科研都无法正常进行。影响微生物菌种稳定性的因素:a)变异;b)污染;c)死亡。,第八节 菌种的衰退、复壮与保藏,在掌握微生物遗传学相关知识的基础上,了解微生物菌种保藏的方法和原理。,一、菌种的衰退与复壮,纯菌种,

44、自发突变,不纯菌种,突变个体,传代增殖,原始个体,衰退菌种,衰退:菌种出现或表现出负变性状,1)从衰退的菌种群体中把少数个体再找出来,重新获得具有原有典型性状的菌种。,2)有意识地利用微生物会发生自发突变的特性,在日常的菌种维护工作中不断筛选“正变”个体。,菌种的复壮:,二、防止衰退的措施1)减少传代次数;2)创造良好的培养条件;3)利用孢子或者芽胞传代4)经常进行纯种分离,并对相应的性状指标进行检查;5)采用有效的菌种保藏方法,三、菌种保藏,目的:在一定时间内使菌种不死、不变、不乱,以供研究、生产、交换之用,1)斜面传代保藏:有些菌要定期传代,否则,容易死亡2)干燥法 A沙土管法 保鲜细菌芽胞可用此法 B麸皮管法 保藏霉菌、放线菌孢子可用此方法 C干燥法,(3)冷冻法 A 冷冻干燥法 适于保鲜多种微生物,特别是细菌适用于此 法保藏 B 液N保鲜法(-196)适于不生孢子的丝状真菌的保藏。C-70低温保藏,需超低温冰箱。(4)悬液法 将微生物细胞悬浮在水、甘油、蔗糖液、葡萄糖液、盐 水、磷酸缓冲液中,某些细菌、酵母用此法可保藏几年至近十年。,

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 生活休闲 > 在线阅读


备案号:宁ICP备20000045号-2

经营许可证:宁B2-20210002

宁公网安备 64010402000987号