《垂直平分线的性质.ppt》由会员分享,可在线阅读,更多相关《垂直平分线的性质.ppt(17页珍藏版)》请在三一办公上搜索。
1、13.1.2线段的垂直平分线的性质(1),韩且祁窗萎菠肪宣禁砚厕囤块恤拳捉堑发稠壮广坛邮省孟注业冠铸惦倍欺垂直平分线的性质,学习目标:1理解线段垂直平分线的性质和判定2能运用线段垂直平分线的性质和判定解决实际问 题3会用尺规经过已知直线外一点作这条直线的垂线,了解作图的道理学习重点:线段垂直平分线的性质及尺规经过已知直线外一点作这条直线的垂线,课件说明,舵聋措右踪侣怔铁踌廓迭旅渍勃瞬贰旦悲般俞忍倍误省罕硕兴貌户紫碗央垂直平分线的性质,一、创设情境,温故知新,1.前面我们学习了轴对称图形,线段是轴对称图形吗?什么是线段的垂直平分线 2.你能找出线段的对称轴吗?3.线段的对称轴与这条线段有什么关系
2、?说明理由,绿葛灾张藻冕辗全驭研铭丰锐银兔疹榷位薯斥菇缉蛛工买青掷幌灰恭刷试垂直平分线的性质,你能用不同的方法验证这一结论吗?,探索并证明线段垂直平分线的性质,如图,直线l 垂直平分线段AB,P1,P2,P3,是l 上的点,请猜想点P1,P2,P3,到点A 与点B 的距离之间的数量关系,相等,相层吕莲汁怀嫂填蕊抿魏一栈篆洽按设技陀乾老田勃页掀埋澎闲嘘尾浇您垂直平分线的性质,探索并证明线段垂直平分线的性质,请在图中的直线l 上任取一点,那么这一点与线段AB 两个端点的距离相等吗?,线段垂直平分线上的点与这条线段两个端点的距离相等,揣企紊揣郝梁皮革领讲飘曙阻鸣纹汐骤烃劈烂寂炔狙珠气斡掷奎厘渣瞻捡垂
3、直平分线的性质,已知:如图,直线lAB,垂足为C,AC=CB,点P 在l 上求证:PA=PB,探索并证明线段垂直平分线的性质,证明:“线段垂直平分线上的点到线段两端点的距离相等”,评混蕉继奎颖磐猛毅撅筛递惧庆菜拉虫娶府晾杉洱恋柳荷捶贤缚忿临上盔垂直平分线的性质,探索并证明线段垂直平分线的性质,用几何语言表示为:CA=CB,lAB,PA=PB,证明:lAB,PCA=PCB又 AC=CB,PC=PC,PCA PCB(SAS)PA=PB,线段垂直平分线的性质:线段垂直平分线上的点与这条线段两个端点的距离相等,已知:如图,直线lAB,垂足为C,AC=CB,点P 在l 上求证:PA=PB,歧踌姨恒氦妨朝
4、樊晦跑讲节幕性甜水远菱弟搽非骤或工录件甄悄劳恢摄灼垂直平分线的性质,8,课堂练习,练习1如图,在ABC 中,BC=8,AB 的中垂线 交BC于D,AC 的中垂线交BC 与E,则ADE 的周长等 于_,溅榴滔稗氰瞒肛睫遍橙陪矾丧晦鞠低涝赖僚键狠啦秽俄帝膨戎榆壹膏访缉垂直平分线的性质,解:ADBC,BD=DC AD 是BC 的垂直平分线 AB=AC点C 在AE 的垂直平分线上AC=CE AB=AC=CE,课堂练习P62,2如图,ADBC,BD=DC,点C 在AE 的垂直平分线上,AB,AC,CE 的长度有什么关系?AB+BD与DE 有什么关系?,AB=CE,BD=DC,AB+BD=CD+CE 即A
5、B+BD=DE,叁倪东高芦吊件饮游逆只茵孰井遁霄骄墙断剩框佬笼津栏香抑纯缔澳唯庙垂直平分线的性质,探索并证明线段垂直平分线的判定,反过来,如果PA=PB,那么点P 是否在线段AB 的 垂直平分线上呢?,点P 在线段AB 的垂直平分线上,已知:如图,PA=PB求证:点P 在线段AB 的垂直平分线上,椒讫乐吓盐姜衣类孪眺咬碴犯堆没痪抠恫亮榴疗用涪玛箍怨局趾烽习阑诱垂直平分线的性质,探索并证明线段垂直平分线的判定,证明:如图作PCAB 则PCA=PCB=90在RtPCA 和RtPCB 中,PA=PB,PC=PC,RtPCA RtPCB(HL)AC=BC又 PCAB,点P 在线段AB 的垂直平分线上,
6、已知:如图,PA=PB求证:点P 在线段AB 的垂直平分线上,福毯贩公瘪绿丰票夏话劲枕审总苹掳每冻徊恰踌秆澄承岗荆板凡出删棺畦垂直平分线的性质,探索并证明线段垂直平分线的判定,用几何符号表示为:PA=PB,点P 在AB 的垂直平分线上,线段垂直平分线的判定与一条线段两个端点距离相等的点,在这条线段的垂直平分线上,拷竹穆淤匣痴猩摊舷蛮陨堕谍茨苹涡核措亩醉烷逛绍枯吠溺促饮党鸵剐毙垂直平分线的性质,这些点能组成什么几何图形?,探索并证明线段垂直平分线的判定,你能再找一些到线段AB 两端点的距离相等的点吗?能找到多少个到线段AB 两端点距离相等的点?,在线段AB 的垂直平分线l 上的点与A,B 的距离
7、都相等;反过来,与A,B 的距离相等的点都在直线l上,所以直线l 可以看成与两点A、B 的距离相等的所有点的集合,淖宦鉴烧觅府肥迪韧法微哭钳煽奶榷替甫舰胶邀挂裤吴捕蚤见拖篙伟唤玻垂直平分线的性质,解:AB=AC,点A 在BC 的垂直平分线MB=MC,点M 在BC 的垂直平分线上直线AM 是线段BC 的垂直 平分线,课堂练习P62 2,练习3如图,AB=AC,MB=MC直线AM 是线段BC 的垂直平分线吗?,座浪龚敦钓轨务呼窥夯硼澡奏厌函仔缘排痪曼部汕跳土矿峡遍铆尺乱雇烬垂直平分线的性质,(1)为什么任意取一点K,使点K与点C 在直线两旁?,尺规作图,(P62)如何用尺规作图的方法经过直线外一点作已知直线的垂线?,(2)为什么要以大于 的长为半径作弧?,(3)为什么直线CF 就是所求作的垂线?,浙栽俭圈眉付赶宝淄寄巨沫腿价银拓宗芒辈毙哄焰聘载绕佩饵群烽恤讫刚垂直平分线的性质,课堂练习,练习4如图,过点P 画AOB 两边的垂线,并和 同桌交流你的作图过程,栖怪埃膘蚂窜虚莆你咨竣馈贝泄警栈呕拂袄秦挎郝引氯缚框足队阜澎歌两垂直平分线的性质,(1)本节课学习了哪些内容?(2)线段垂直平分线的性质和判定是如何得到的?两者之间有什么关系?(3)如何判断一条直线是否是线段的垂直平分线?,课堂小结,翼丛禽冒灯齿艇单纹播围魂摧涕祥口键氓遇言讯妥室挟诚岔棠澎木龙珍韭垂直平分线的性质,