.冷镦材料基础知识培训

上传人:sccc 文档编号:5818886 上传时间:2023-08-23 格式:PPT 页数:136 大小:2.87MB
返回 下载 相关 举报
.冷镦材料基础知识培训_第1页
第1页 / 共136页
.冷镦材料基础知识培训_第2页
第2页 / 共136页
.冷镦材料基础知识培训_第3页
第3页 / 共136页
.冷镦材料基础知识培训_第4页
第4页 / 共136页
.冷镦材料基础知识培训_第5页
第5页 / 共136页
点击查看更多>>
资源描述

《.冷镦材料基础知识培训》由会员分享,可在线阅读,更多相关《.冷镦材料基础知识培训(136页珍藏版)》请在三一办公上搜索。

1、冷 镦 材 料,冷镦(挤压)成型工艺简介:,紧固件成型工艺中、冷镦(挤)技术是一种主要加工工艺。冷镦(挤)属于金属压力加工范畴,在生产中,在常温状态下,对金属施加外力,使金属在预定的模具内成形,这种方法通常叫冷镦。它的主要优点概括为以下几个方面:a.钢材利用率高;b.生产率高;c.机械性能好;d.适于自动化生产。总之,冷镦(挤)方法加工紧固件、异形件是一种综合经济效益相当高的加工方法,是紧固件业中普遍采用的加工方法,也是一种在国内、外广为利用、很有发展的先进加工方法。因此如何充分利用、提高金属的塑性,掌握金属塑性变形的机理,研制出科学合理的紧固件冷镦(挤)加工工艺,是冷镦行业的目的和宗旨所在。

2、,冷镦材料的技术信息,材料牌号:如Cr12MoV、20Mn、SKH9、M42、1022、306等;化学成分:C、Si、Mn、Ni、Cr、P、S等;热处理状态:退火、淬火、回火、固溶处理、时效处理等;机械性能:b、s、5、k、HB、HRC等;了解、熟悉和理解这些信息,对我们合理选用和使用冷镦材料,会有极大的帮助。,第一章 金属材料的基础知识,第一节 金属材料的性能,金属材料适应冷热加工的能力,称为加工工艺性能,简称工艺性能。工艺性能好的材料易于承受加工,生产成本低;工艺性能差的材科在承受加工时工艺复杂、困难,不易达到顶期的效果,加工成本也高。,一、金属材料的工艺性能,(一)铸造性能(略),(二)

3、锻造性能重要零件的毛坯往往要经过锻造工序。材料承受锻压成型的能力,称为可锻性。金属的锻造性能可用金属的塑性和变形抗力(强度)来衡量。金属承受锻压时变形程度大而不产生裂纹,其锻造性能就好。,金属的冷热拉伸、压缩、挤压和弯曲性能主要取决于材料的塑性和强度。,(三)焊接性能金属材料采用一定的焊接工艺、焊接材料及结构形式,优质焊接接头的能力,称为金属的焊接性。影响钢的焊接性能的主要因素是钢的含碳量,随着含碳虽的增加,焊后产生裂纹的倾向增大。钢中其它合金元素的影响相应小些。,金属的锻造性能取决于材料的成分、组织及加工条件。,通常低碳钢具有较好的可锻性,低碳钢的可锻性最好。随着含碳量的增加,钢的可锻性降低

4、。合金钢的可锻性略逊于碳钢。一般情况下,合金钢中合金元素含量越多,其可锻性越差。铸铁则不能承受锻造加工。,(四)切削性能金属材料承受切削加工的难易程度,称为切削性能。,二、金属材料的力学性能,力学性能是指金属材料在外力作用下,所表现出来的抵抗变形和破坏的能力以及接受变形的能力。,(一)强度和塑性,强度是衡量材料在外力作用下抵抗塑性变形或断裂的能力。塑性是衡量材料在外力作用下接受变形的能力。拉伸试验是测定强度和塑性的最普遍方法,该试验依据国家标准(目前通用的标准为GB/T 2282002)进行,将材料制作成标准试样或比例试样,在万能实验机上沿试样轴向缓慢地施加拉力,试样随拉力的增加而变形,直至断

5、裂。测得材料的弹性极限、屈服极限、强度极限及塑性等主要力学性能指标。,1拉伸试样,2拉伸曲线拉伸曲线表示试样拉伸过程中力和变形关系,可用应力延伸率曲线表示,纵坐标为应力,=F/S0,横坐标为延伸率,l/l0。,拉伸曲线的形状与材料有关,由图可见,在载荷小的oa阶段,试样在载荷F的作用下均匀伸长,伸长量与载荷的增加成正比。如果此时卸除载荷,试样立即回复原状,即试样产生的变形为弹性变形。当载荷超过b点以后,试样会进一步产生变形,此时若卸除载荷,试样的弹性变形消失,而另一部分变形则保留下来,这种不能恢复的变形称为塑性变形。,强度是材料抵抗塑性变形或断裂的能力。通过拉伸试验所测得的常用的强度指标有屈服

6、强度和抗拉强度。屈服强度是材料产生屈服时对应的应力值。用符号s表示,单位是N/mm2或MPa,大小为载荷与试样原始横截面积的比值,即:s=Fs/S0(N/mm2)式中:Fs材料屈服时的载荷(N);S0试样原始横截面积(mm2)。,3.强度,抗拉强度是材料在拉断前所承受的最大应力值。用符号b表示,单位是N/mm2或MPa,其大小为材料最大载荷与试样原始横截面积的比值表示,即:b=F/S0(N/mm2),式中:F 材料屈服时的载荷(N);S0试样原始横截面积(mm2)。,4塑性,金属材料的塑性指金属材料产生塑性变形而不破坏的能力。拉伸试验所测得的塑性指标有断后伸长率和断面收缩率。断后伸长率,又称延

7、伸率,标准试样的断后伸长率用表示,指试样被拉断后,其标距部分所增加的长度与原标距比值的百分率。即:=(l1-l0)/l0100%,式中:l1试样被拉断后标距的长度。l0试样原始标距。,断面收缩率指试样拉断后截面积的收缩量与原截面积之比的百分率,用符号表示。,(二)硬度金属材料的硬度通常是指材料表面抵抗更硬物体压入时所引起局部塑性变形的能力。常见的硬度指标有布氏硬度(HB)、洛氏硬度(HR)、维氏硬度(HV)和里氏硬度(HL)等。,1布氏硬度(HB),压头的材质有淬火钢球或硬质合金两种,当压头材质为淬火钢球时,布氏硬度用HBS表示,适用于测量布氏硬度450的材料;当压头材质为硬质合金时,布氏硬度

8、用HBW表示,适用于测量布氏硬度在450650范围内的材料。,2洛氏硬度(HR),用一定载荷将压头压入材料表面,根据压痕深度表示硬度值。根据压头和载荷的不同,洛氏硬度分HRA,HRB和HRC,试验规范见表3-1。,试验规范,3维氏硬度(HV)维氏硬度是用一定的载荷将锥面夹角为136的正四棱锥金刚石压头压入试样表面,保持一定时间后卸除载荷,试样表面就留下压痕,测量压痕对角线的长度,计算压痕表面积,载荷F除以压痕面积S所得值即为维氏硬度。维氏硬度用符号HV表示,计算公式如下:,图1-5 维氏硬度试验示意图,维氏硬度也可按对角线的d值从表中查出,d值为两对角线的算术平均值。维氏硬度的结果表示方法为:

9、硬度值+HV+试验载荷+载荷保持时间(1015秒不标注)。,例如,640HV3020表示在试验力30kgf作用下保持载荷20秒测定的维氏硬度值为640。,4里氏硬度(HL)里氏硬度用规定质量的冲击体在弹力作用下以一定的速度冲击试样表面,用冲头在距试样表面1mm处的回弹速度与冲击速度的比值计算硬度值。计算公式如下:式中:vR冲击体回弹速度;vA冲击体冲击速度。,布氏硬度、洛氏硬度、维氏硬度和里氏硬度各有优缺点:布氏硬度由于压痕面积较大,能反映较大范围内的平均硬 度,所以 测量结果具有较高的精度和稳定性。但操作费时,对试样表面有一定破坏。洛氏硬度操作简单,可以直接读出硬度值,且压痕小,不 伤工件。

10、缺点是所测硬度值的离散性较大。维氏硬度的载荷小、压痕浅,广泛用于测定薄工件表面硬 化层。里氏硬度操作简单,便携性好,广泛用于现场硬度测量。,各种硬度试验因其试验条件的不同而不能直接换算,需要查阅专门的表格进行换算比较。硬度是材料的重要性能之一,一般情况下,材料的硬度高,其耐磨性能也较好。材料的硬度与强度之间也有一定的关系,例如,对于未淬硬钢,布氏硬度与抗拉强度间存在如下的近似换算关系:b0.362HBS(当HBS175)b0.345HBS(当HBS175),(三)冲击韧性(k)冲击韧性是衡量材料抵抗冲击载荷能力大小的指标,常用冲击实验测定。冲击韧性是试样缺口处截面上单位面积所消耗的冲击功。冲击

11、韧性用k表示,计算公式如下:,式中:k试样冲断时所消耗的冲击功(J);S试样缺口处截面积(cm2)。,影响冲击韧性值大小的因素有材料的化学成份、冶金质量、组织状态、表面质量和内部缺陷等。另外,金属材料的冲击韧性随温度的降低而下降。金属材料的强度、塑性、硬度、韧性四者中真正独立的是强度和塑性,硬度与强度有极为密切的关系,韧性是受强度和塑性的综合影响;因此,在鉴别金属材料的力学性能时,常常是以强度和塑性为主要指标。,(四)疲劳强度金属材料在远低于其屈服极限的交变应力长期作用下发生的断裂现象,称为金属的疲劳。,图1-10 材料疲劳断口宏观形貌,三、机械性能等级的标记制度:,GB/T3098.1对螺栓

12、、螺钉和螺柱(以下以螺栓为例)的机械性能等级规定了一套完整的标记制度。G13/T 3098.1将螺栓的性能等级分为10个等级,分别标记为3.6、4.6、4.8、5.6、5.8、6.8、8.8、9.8、10.9和12.9。螺栓机械性能等级标记用两组数字表示,两组数字中间用符号“”隔离开来。标记中“”前的一组数字表示这一等级的公称抗拉强度的百分之一。例如4.8级中的4表示这一等级的公称抗拉强度为400 N/mm2;8.8级中的8表示8.8级螺栓的公称抗拉强度为800 N/mm2等。,标记中的第二部分数字(“”后)代表这一性能等级的“屈强比”的10倍。“6”表示这一等级的螺栓的屈强比为0.6。“8”

13、表示这一等级的屈强比为0.8。屈强比的高低表示这根螺栓(制造的材料)被强化程度的高低,即表示该螺栓的物理性能。,对于钢铁材料无论采用哪种强化方式:冷作硬化或调质处理,虽然屈服点与抗拉强度经过强化后同时提高,但这两个指标被强化的程度是不一样的屈服点上升幅度总是高于抗拉强度,因此随着强化程度的增加,屈强比也在升高。一般热轧正火态的低碳钢约为0.6。例如15号钢未强化时,屈强比约为0.63,其物理性能为软态,经过20的冷变形(如冷拔产生冷作硬化)后,这时屈强比由0.6上升为0.8,其物理性能为强化态。经过调质处理的螺栓强化规律大致与变形强化的一致,只是淬火强化可以使屈强比升得更高(0.9)。其物理性

14、能为硬。,一、金属键与晶体结构金属原子的结构特点是:价电子数目较少(13个),电子层数较多,原子核对价电子的引力较弱,价电子极易脱离原子核形成自由电子,金属原子成为正离子,如图1-13所示。自由电子在正离子之间做高速运动,形成带负电的电子气。金属原子间这种正离子与自由电子的电性引力结合,称为金属键。,第二节 金属的晶体结构与结晶,金属键与非金属原子间的结合键(离子键和共价键)不同。金属离子间的键合力很大,且由大量原子结合成整体金属,故金属的强度高:自由电子在电场力作用下作定向运动,使金属具有导电性;金属离子周围的键是等价的、对称的,因而金属原子在空间的位置必须有规则地排列且势能最低,即呈晶体结

15、构。金属离子在平衡位置上作高速振动,温度越高,振幅越大。金属的这种结构决定了其具有优良的导热性。,取晶格中一个最基本的几何单元来表明原子排列的规律性,这个最小的几何单元,称为“晶胞”。显然,金属的结构是由大量晶胞在空间堆垛形成。晶胞各边的长度a,b,c称为“晶格常数”,其大小是以为单位来度量。,金属材料通常都是晶体,为了便于分析晶体中原子的排列规律,通常用假想的线条将各原子中心连接起来,使之构成一个空间格架,这种三维的空间格架,称作“晶格”.,常见的晶体结构有三种:即体心立方晶格;面心立方晶格;密排六方晶格。,为了研究方便,可以把金属原子看成球形,并且人为规定与邻 近的原子是相切的,并将球的半

16、径规定为原子半径。,二、晶面、晶向与晶格致密度,如果依晶格中晶胞的长、宽、高取坐标系X、Y、Z,将坐标原点选在一个顶角原子上,晶格就有了方位和方向,称为位向。,三、单晶体与多晶体在单晶体中晶格的位向是一致的。金属的单晶体很小,约在10-1-10-3cm数量级。金属总是以多晶体的形式存在,所以往往看不到金属的单晶体,金属单晶体的各向异性也被抵消了。右图为多晶体示意图。,在自然界中,常常可以看到食盐,方解石的单晶体。,四、晶体的缺陷,金属晶体的缺陷依照其几何形状,分为点缺陷、线缺陷和面缺陷。,(一)点缺陷,点缺陷是指晶格中三维尺寸都较小的点状缺陷,主要包括晶格空位、间隙原子和异质原子。图1-23为

17、空位和间隙原子,空位指晶格中某些结点处没有原子,而间隙原子指晶格间隙中出现多余原子。产生空位和间隙原子的主要原因是由于原子热运动使其逃离晶体结点位置或转移到晶格间隙中。图1-24为异质原子,一般是其他金属或非金属原子置换原晶格中原子或存在原晶格间隙中。空位、间隙原子和异质原子缺陷均会引起晶格局部变形,即晶格畸变。晶格畸变引起能量升高,使金属的强度、硬度和电阻升高。,(二)线缺陷线缺陷又称位错,是指晶体中一列或若干列原子发生有规律的错排现象。位错有两种类型,最简单的是刃形位错.位错的存在对金属的性能有很大影响,随着位错数目的增加,金属强度先降低后增加,所以金属晶体中不含位错或含有大量位错均能使强

18、度提高。,(三)面缺陷,面缺陷是晶体中二维尺寸较大,一维尺寸较小的呈面状分布的缺陷,如晶界、亚晶界等。,在晶界上原子的无规则排列,使得晶界的性能与晶内差别很大:晶界原子比晶内原子易于发生化学反应,因而容易被腐蚀;晶界原子近于液态结构,致使晶界熔点低于晶内;异类原子和杂质在晶界上存在时能量低,所以晶界是杂质原子易于聚集的地方;由于晶界处原子排列无规则,金属的塑性变形(滑移)受到阻碍,致使晶界的强度比晶内高。因此,金属晶粒的大小对金属的性能有很大影响。,(四)影响晶粒大小的因素,金属晶粒的大小是影响金属性能的重要因素。晶粒大小与常温力学性能的关系为:晶粒越细小,金属的强度、塑性、韧性越高。反之晶粒

19、越粗大,金属的力学性能越差。制备细晶粒材料的措施一般为在结晶过程提高形核率和抑制长大率。形核率和长大率的影响因素主要有以下三个方面:,1过冷度影响形核率N和长大率G与过冷度t关系,一般随着过冷度的增加,形核率和长大率先增加后下降。,3金属流动与振动在金属结晶时如果增加液体流速或给以机械振动、超声波振动,都将达到增加形核率或抑制长大率的效果。,2难熔杂质的影响高熔点杂质的加入对细化晶粒的作用也非常明显,由于液态金属结晶时可以附着在未全部熔解的高熔点杂质的颗粒表面,所以加入高熔点杂质能提高形核率。,第三节 金属的塑性变形与再结晶,一、单晶体的塑性变形 晶体塑性变形的主要形式是滑移和孪生。,二、多晶

20、体的塑性变形 多晶体塑性变形时,每个晶粒的塑性变形与单晶体塑性变形基本相同,但由于晶界的作用及相邻晶粒之间位向不同,多晶体的塑性变形与单晶体相比又有所不同。,实际使用的金属材料几乎都是多晶体。,(一)晶界的影响晶界是相邻两个晶粒的边界,晶界上的原子排列是无规则的,金属中的杂质原于往往存在其间,这对于位错的运动形成很大阻力。,用只有两个晶粒的试样进行拉伸试验,变形后试样出现了所谓“竹节现象”,如图139所示。这说明晶界附近晶体的塑变抗力很大。由此可以推断,多晶体金属的晶粒越细小(单位体积内晶粒数越多)时,该晶体的塑变抗力越大,即强度越高。,(二)位向差的作用外力的切应力分量在外力呈45角度时最大

21、。金属的晶粒越细时,其强度越高。细晶粒的金属不仅强度高,塑性也好。,在实际生产中,希望金属零件的晶粒越细越好。在很多设备中,有些重要零件的晶粒度,被限定在一定级别之内,尤其是承受冲击的构件,如碎煤机的锤头和锤扦,细晶粒金属的强度高、塑性好,则冲击韧性也高,能够承受反复的冲击而不易产生疲劳损坏。,三、冷塑性变形对金属组织和性能影响金属材料在外力作用下产生塑性变形,其内部的组织和力学性能、物理、化学性能也发生一系列的变化,主要的变化是加工硬化,同时在金属内部产生形变内应力。,如:碎煤机锤头、磨煤机衬板、斗轮机斗齿、冷卷弹簧等都是利用加工硬化进一步提高强度的。,(一)加工硬化金属在受外力作用屈服后,

22、如继续变形则需要增加应力,即随着塑性变形的增加金属不断强化、硬化,直至达到强度极限。低碳钢的加工硬化现象见图141所示,出现了加工硬化后强度可提高80以上。建筑用钢筋须先经过冷拔强化。但加工硬化会使金属的电阻增加,耐腐蚀性下降,特别是金属的塑性韧性下降,甚至趋于零。金属的显微组织:会发现金属的晶粒逐渐被拉长,甚至会变成细条状、纤维状,这说明晶粒发生碎化,亚晶的数量增加。晶界和亚晶界数量的增加,使位错运动受阻,形变抗力加大,导致强度和硬度增加,性能:随着塑性变形量的增加,位错密度增加,使运动中的位错发生复杂的交互作用,位错线相互缠结、堆积,阻碍了位错的运动,也会使强度、硬度提高,塑性、韧性下降。

23、(二)形变内应力(略),四、回复与再结晶 形变后的金属加热时,将发生一系列的组织和性能的变化,变化的主要形式是回复与再结晶。,(一)回复 经过塑性变形的金属在加热温度较低时,金属组织基本不变,硬化现象仍然保留,但内应力大大消除,这种现象称为回复。,(二)再结晶塑性变形后的金属在较低温度下加热时,虽经回复使内应力大部分消除,但显微组织和结构没有明显的改变,形变储存能未能完全释放,金属组织仍处于不稳定状态。如继续提高加热温度,使金属原子的扩散能力增加,这种高能不稳定状态将消除,晶粒拉长和碎化趋于消失,金属的组织、性能完全恢复到变形前的状态。这种变化实质上是一个重新形核、长大的过程,称为再结晶。再结

24、晶后的金属组织与形变前的退火组织相同,加工硬化现象完全消失,位错密度也降至变形前的状态,如图l43所示。,加热温度过高,保温时间过长,都能使已形成的细晶粒组织继续长大,而成为粗大晶粒的组织,使金属的性能变坏,这是应该力求避免的。回复、再结晶和晶粒长大过程中,随加热温度的增加,组织和性能变化如图145所示。再结晶退火在工业生产中适于冷拔、冷拉的金属材料。往往在冷拔或冷拉后,安排一道或数道再结晶退火工艺,使变形后的金属恢复到变形前,再继续变形,如冷拔无缝钢管,冷拉钢丝、铜丝等。,五、热加工与冷加工的区别,许多重要工件在机加工前,往往安排一道锻造工序,如汽轮机的主袖、叶轮叶片,发电机风机、水泵的主轴

25、、齿轮等。,用金属学的观点来看,凡在金属的再结晶温度以下的加工变形称作冷加工,而在再结晶温度以上的加工变形称为热加工。金属热加工的塑性变形量大,不会出现加工硬化,可以很快加工成型。在热加工中,金属的某些缺陷(如气孔、裂纹等)可以在高温下焊合,因而热加工后金属的组织细密质量好。,第二章 铁碳相图及其合金,第一节 铁碳合金的相结构,纯铁从液态结晶后得到体心立方晶格的-Fe,随后又有两次同素异构转变,即面心立方格的-Fe和体心立方格的-Fe。碳溶入-Fe和-Fe铁中所形成的固溶体为铁素体和奥氏体。当含量超过铁素体和奥氏体的溶解度时,则会出现金属化合物相Fe3C,称做渗碳体。碳原子溶入-fe 中所形成

26、的固溶体称做高温铁素体。它在1400以上的高温出现,对工程上应用的铁碳合金的组织和性能没有什么影响,故不作为铁碳合金的基本相。固态铁碳合金的基本组成相是铁素体,奥氏体和渗碳体。,一、铁素体(F),碳原子溶入-Fe中形成的间隙固溶体,称做铁素体。由于体心立方格的-Fe的晶体格间隙半径只有0.036nm,而碳原子半径为0.077nm,所以铁素体对碳的溶解度很小。在727时最大固溶度为0.02%,而在室温时固溶度几乎降为零。铁素体的力学性能与纯铁相近,其数值如下:,抗拉强度b 250Mpa,,屈服强度s 140Mpa,断后延伸率11.3 40%-50%,冲击韧性K 200 J/cm2,布氏硬度HBS

27、 80,由此可见,铁素体有优良的塑性和韧性,但强度,硬度较低,在铁碳合金中是软韧相。铁素体是912以下的平衡相,也称做常温相,在铁碳相图中用符号F表示。,二、奥氏体(A),碳原子溶入-Fe中形成的间隙固溶体,称做奥氏体。具有面心立方格的-Fe的间隙半径为0.052nm,比-Fe的间隙稍大,在1148时碳原子在其中的最大固溶度为2.11%。随着温度的降低,碳在-Fe中的固溶度下降,在727时是0.77%。奥氏体是727以上的平衡相,也称高温相。在高温下,面心立方格晶体的奥氏体具有极好是塑性,所以碳钢具有良好的轧、锻等热加工工艺性能。在铁碳相图中,奥氏体通常用符号A表示。,三、渗碳体(Fe3C),

28、渗碳体是铁与碳原子结合形成的具有金属性质的复杂间隙化合物。它的晶体结构复杂,属于复杂八面体结构,分子式为Fe3C,含碳量6.69%。渗碳体的硬度很高,HV800,但极脆,塑性和韧性几乎是零,强度b=30Mpa左右。在铁碳合金中,它是硬脆相,是碳钢的主要强化相。渗碳体在碳钢中的含量和形态对钢的性能有很大影响。它在铁碳合金中可以呈片状、粒状、网状和板状形态存在。在高温时,钢和铸铁中的渗碳体在一定时间会发生下面的分解反应,析出石墨态的碳。,Fe3C 3Fe+C(石墨),一、相图图形介绍,在铁碳合金系中,含碳量高于6.69%的铁碳合金性能极脆,没有使用价值。因此只研究FeFe3C,即含碳量小于6.69

29、%这一部分,通常称为FeFe3C相图,也称铁碳合金相图。在FeFe3C相图中,较稳定的化合物Fe3C与Fe是组成二元合金的两个组元。相图有三个部分组成,左上角为包晶相图。包晶相图与共晶相图都是具有三相平衡反应的基本相图,但它是在1400以上发生的反应,在研究和应用中对铁碳合金的组织和性能都没有什么影响,故不予研究。FeFe3C相图可简化为图2-2的形式。,第二节 铁 碳 合 金 相 图,图中的特性点,A点:纯铁的熔点 C点:共晶点 D点:Fe3C的熔点 E点:-Fe中的最大溶碳量 G点:-Fe-Fe的同素异构转变点 P点:碳在铁素体中的最大溶解度。S点:共析点,图中的特性线,ACD液相线 AE

30、CF固相线 GS、GP 为-Fe固溶体转变线 PSK 奥氏体转变为珠光体的共析转变线,二、六种典型合金,工程上使用的铁碳合金分为钢和铸铁两大类,它们的区别在于所含碳量不同。含量碳量大于2.11%的,称为铸铁。,在分析铁碳合金的平衡组织时,按照组织的不同,习惯将钢和铸铁分为共析钢,亚共析钢,过共析钢。共晶白口铸铁,亚共晶白口铸铁和过共晶白口铸铁等六种典型合金,如图23所示。,(一)共析钢图中合金称为共析钢,其含碳量为0.77%。(二)亚共析钢图中合金,含碳量低于0.77%的钢均称为亚共析钢。(三)过共析钢图中合金,含碳量在0.772.11%的钢,均统称为过共析钢。(四)共晶白口铁图中合金称为共晶

31、白口铁,含碳量为4.3。(五)亚共晶白口铁图中合金,含碳量高于2.11%,低于4.3%的铁均称为亚共晶白口铁。(六)过共晶白口铁图中合金,含碳量为4.3%6.69%的铁,均统称为过共晶白口铁。,三、含碳量对铁碳合金组织和力学性能的影响,含碳量小于0.0218%的铁碳合金称为工业纯铁,它的力学性能与铁素体基本相同,有良好的塑性和韧性,较低的强度与硬度。在铁碳合金中含碳量变化对组织和性能影响很大。从Fe-Fe3C相图中可看出,当含碳量不同时,组织将变化。图2-16为含碳量对碳钢组织影响的示意图。当含碳量为0.77%时,为铁素体+珠光体;而在过共析钢中,组织则为珠光体+渗碳体。从示意图中可以很清楚的

32、得出含碳量变化后这些组织的变化情况。,含碳量变化后对力学性能的影响可见图2-17所示。从图中可看出,当含碳量增加后,碳钢的强度和硬度升高,而塑性和韧性则下降。,这是由于含碳量增加后,碳钢中的渗碳体在不断的增加。但是,含碳量超过了0.9%后,由于游离状态的二次渗碳体自晶界析出,这些硬而脆的网状渗碳体包围住珠光体的晶粒,降低了晶界之间的结合力,使钢的脆性增加,反而使碳钢强度逐渐下降。当碳钢的含碳量大于1.4%后,在工程上已应用很少。,四、铁碳合金在工程上的应用,铁碳合金相图在选择和使用材料、金属加工、热处理以及选配合金钢、合金铸铁等方面有重要作用。铁碳合金相图能很好地反映钢铁材料的成分与组织之间的

33、关系,可根据工程上的需要选材。,白口铸铁的硬度高,脆性大,难于加工,只能用作拔丝模、磨煤机磨球等。如果在白口铸铁中加入足够的铬、镍等合金元素,制成合金白口铁,则是很好的耐磨材料,在磨煤机、碎煤机、灰渣泵、管道内衬、喷燃器中有很广泛的应用。,铁碳合金相图是选择热加工工艺的重要依据,在铸铁、轧锻、焊接和热处理方面应用很广。,第三章 碳素钢,目前使用的金属材料中,碳钢占有重要地位。工程上使用的碳钢一般是指含碳量不超过1.,且含有锰、硅、硫、磷等杂质的铁碳合金。,一、常存杂质对碳钢性能的影响,碳、锰、硅、硫、磷是碳钢中的常存元素,统称五大元素,在炼钢是要对含量进行分析和控制。碳在钢中的影响已如前述。锰

34、、硅、硫、磷则称为常存杂质,它们的含量对碳钢的性能也有较大的影响。(1)锰的影响,锰作为炼钢时的脱氧剂而残存在钢中。它以置换固溶体的形式溶入铁素体,可以提高钢的强度。特别是它能与钢中的硫,化合形成高熔点的MnS化合物,可消除硫的脆热性,因此,锰是有益元素。在碳钢中锰的含量一般不超过1.2%以下。(2)硅的影响,硅与锰相似,也是炼钢脱氧是残存在钢中的。硅溶入铁素体可以起固溶强化的作用,但含量增多使钢变脆,一般控制在0.4%以下。,(3)硫的影响 硫是从矿石和燃料中带来的,虽经炼钢,炼铁,还未能完全消除而残存钢中。硫不溶于铁,但容易以FeS的形式与FE形成低熔点共晶体并存在与晶界上这种共晶体在95

35、8时熔化,使得在11001200是轧、锻的钢材发生晶间开裂并报废,称为热脆性,因此硫是有害元素,在钢中的含量要控制在0.055%以下。当钢中有锰存在是,锰与硫产生高熔点的MnS(熔点1620),可以消除硫的热脆性。(4)磷的影响 磷也是矿石经冶炼残存在钢中的有害杂质,它可以溶入铁素体中使钢的韧性下降,并使脆性转变温度升高,这种现象称作冷脆性。磷在钢中的含量被限制在0.045%以内。除了以上四种常存杂质外,还有氢、氧、氮等残存与钢中,这些气体易与形成白点、气孔和非金属夹杂物。特别是氧化夹杂,如SiO2、MnO等。这些缺陷的存在,均要使钢材质量下降。,二、碳钢的分类、编号和用途,(1)碳钢的分类

36、碳钢的分类方法很多,通常按照钢的含碳量、质量和用途分类。按含碳量分为:a 低碳钢:含碳量0.25;b 中碳钢:含碳量在0.250.6之间 c 高碳钢:含碳量0.6。按钢的质量分为:普通碳素钢:钢中含S0.055,P0.045;优质碳素钢:钢中含S0.04,P0.040;高级优质碳素钢:钢中含S0.030,P0.035。按钢的用途分为:碳素结构钢:用于制造工程构件(铁塔、锅炉支架、厂房钢结构、起重设备和工程机械结构、水冷壁管、风管、榆粉管道、及机械零 件f抽、齿轮、螺栓、螺母等)。一般为低、中碳钢。碳素工具钢:用于制造各种工具、刀具、刃具、模具、轴承等。一 般属于高碳钢。,(2)碳钢的编号及用途

37、 世界上许多工业国家都有自己的编号方法。我国碳钢的编号方法按GB70079分为三种。1)碳素结构钢 这类钢的牌号是按照力学性能中的屈服强度分成五类来编号的,数字大说明屈服强度值也越高,碳钢中的含碳量也越高;塑性也就要越低。碳素结构钢用于制造螺栓、螺母、钢板、圆钢以及各类型钢,广泛应用于机械制造及建筑等行业中。,由Q+数字+质量等级符号+脱氧方法符号组成。它的钢号冠以“Q”,代表钢材的屈服点,后面的数字表示屈服点数值,单位是MPa例如Q235表示屈服点(s)为235 MPa的碳素结构钢。必要时钢号后面可标出表示质量等级和脱氧方法的符号。质量等级符号分别为A、B、C、D。脱氧方法符号:F表示沸腾钢

38、;b表示半镇静钢:Z表示镇静钢;TZ表示特殊镇静钢,镇静钢可不标符号,即Z和TZ都可不标。例如Q235-AF表示A级沸腾钢。专门用途的碳素钢,例如桥梁钢、船用钢等,基本上采用碳素结构钢的表示方法,但在钢号最后附加表示用途的字母。,2)优质碳素结构钢(a)正常含锰量的优质碳素结构钢:含锰量0.8。编号方法简单,用两位数字表示,数字表示含碳量的万分之几。,例如20号钢、45号钢即表示含碳量为0.20、0.45的优质碳素结构钢。钢号从05、08、10、15、20直到85。,如20Mn(20锰)或65Mn(65锰)。优质碳素结构钢的牌号、成分和力学性能见表23。,如作焊丝用的写作H08,又如锅炉用的2

39、0号优质碳素结构钢可写作20g(或20锅),20g可用作锅炉钢板、压力容器和锅炉水冷壁及小型汽包等。,(b)较高含锰量的优质碳素结构钢:含锰量在0.71.2洲之间。编号方法是在正常含锰量优质碳素结构钢钢号的后面加写Mn(或锰)表示,,在优质碳素结构钢中,对于专门用途的优质碳素结构钢编号,是在钢号前面或后面加一个表示用途的汉字或汉字的拼音符号。,优质碳素结构钢的应用。低碳优质碳素结构钢可用作桥梁起重及工程机械,钢结构件,还可渗碳后使用,制作机械零件;中碳优质碳素结构钢可经调质后制作轴、齿轮、温度不超过450的汽轮机转子、联轴器和汽缸紧因件;中、高碳优质碳素结构钢可用作各类弹簧、板黄和钢丝绳等。优

40、质碳素结构钢一般经热处理后使用,或在正火状态下供应。若含S、P量更低的叫高级优质碳素结构钢,就在钢号后面加写A字(或高字),如20 A(或20高)。20 A广泛应用于锅炉的水冷壁管。,3)碳素工具钢:碳素工具钢的含碳量一般在0.65一1.3之间。编号方法是用字母T(或碳)加数字表示,数字表示含碳量的千分之几。例如T8、T12(碳8、碳12)表示含碳量为0.8、1.2的碳素工具钢。钢号为T7、T8T13(碳7、碳8碳13)。碳素工具钢含S、P量均较少,属于优质钢。,若为高级优质碳素工具钢,则在钢号后加写A字(或高字),如T8A、T12A(碳8高、碳12高)。,第四章 合金钢,合金钢是以铁和碳元素

41、为基础,为了满足某方面的性能要求,有目的加入一些其他元素冶炼而成的钢。这种有目的加入的合金元素有铬、锰、硅、钼、钨、钒、钛、铌、硼、镍、锆、稀土等。合金元素加入后,可以提高钢的机械性能,改善钢的机械性能。有些合金元素的含量达到一定时,还可以钢具有某些特殊的机械性能或特殊的物理化学性能。,第一节 合金元素对钢的影响,一、合金元素在钢中的存在形式,关于硼含量的规定:GB/T 3098.1中规定B(硼)最大含量从0.006降为0.003。硼钢是一种比较经济的钢种,微量的硼就能大大地提高钢的淬透性(如0.003)。但硼含量高了对钢也是有害的。因为硼化物是一种极硬及极脆的夹杂,量多了会增加脆性。,(一)

42、合金元素溶入铁素体,几乎所有的合金元素或多或少地溶入铁素体而形成合金铁素体。由于合金元素与铁的晶格类型和原子半径有差异,故合金元素溶入铁素体后必然引起晶格畸变,从而产生固溶强化,使铁素体的强度和硬度升高,塑性和韧性下降,如图4-1及图4-2所示。,由图可知,合金元素加入量愈多,铁素体的硬度就愈高,以硅、锰、镍元素为最显著。由图4-2可知,硅量在1%左右,锰量在1.5%左右,既能提高铁素体的硬度,又不降低韧性:铬元素含量在2%5%S时,不仅能提高铁素体的硬度,又能提高韧性。,(二)形成碳化物,按照合金元素在钢中与碳的作用不同,可以将合金元素分为两大类。一 类是不与碳作用的元素,因而不能形成碳化物

43、,只能溶入固溶体;另一类是与碳有亲和力,能形成碳化物。不与碳化合的元素有:镍、硅、钴、铝、铜等。能与碳化合形成合金化物的元素,按其与碳的亲和力由弱到强大致可排成下列次序:锰、铁、铬、钼、钨、钒、锆、铌、钛等。与碳亲和力较弱的元素(如锰、铬、钼、钨等)含量较少时,其中一部分以原子状态溶入固溶体,另一部分进入渗碳体而置换其中的铁原子,形成特殊的化合物,如Cr7C3或(Fe、Cr)7C3、WC或(Fe、W)6C等。,与碳的亲和力强的元素,如钒、锆、铌、钛等,只要钢中有足够的碳元素,就能形成这些元素的合金碳化物,如VC、ZrC、NbC、TiC等,只有在钢中缺少碳的情况下,这些元素才以原子状态溶入固溶体

44、。合金元素不同,合金碳化物的形状和尺寸也不同,强碳化物的碳化物成颗粒状,比较细碎。,二、合金元素对铁碳合金相图的影响,合金元素对Fe-Fe3C相图的相区和S、E等临界点位置有影响。用合金元素Fe-Fe3C相图的影响来分析合金钢的组织变化规律。常用合金元素对Fe-Fe3C相图的影响可以分为两类。一类是扩大奥氏体组织的相区,属于这一类的合金元素有锰、镍、氮等;另一类是缩小奥氏体组织的相区,属于这一类的合金元素有铬、钨、钼、钒、钛、铝、硅等。锰类元素及铬类元素对FeFe3C相图中奥氏体相区和S、E点的影响,如图43和图44所示。,从图43和图44中可以看出:若钢中加入大量的扩大奥氏体区域的合金元素,

45、甚至会使相图中的奥氏体延至室温以下。在室温下能获得稳定的单相奥氏体组织,这种合金钢叫奥氏体钢。若钢中加入大量的缩小奥氏体区域的合金元素,则奥氏体区域可能封闭甚至消失,铁素体区域就扩大。在固态是具有稳定的单相铁素体组织,这种合金钢称为铁素体钢。合金元素对A3及A1温度的影响,使合金钢的热处理加热温度发生变化。由于S点左移,使含碳量相同的碳钢与合金钢组织不同。,例如含碳量0.4%的碳钢为具有铁素体与珠光体的亚共析组织;但加入14%的铬以后,则变为珠光体的共析组织。,E点左移,就意味着出现莱氏体的含碳量降低,使含碳量低于2.11%的合金钢中出现莱氏体组织,这种钢就称为莱氏体钢。,例如,高速钢的含碳量

46、只有0.8%左右,但属于莱氏体钢。,三、合金元素对钢热处理的影响,(一)合金元素对奥氏体化的影响,合金元素加入钢中后,改变了碳在钢中的扩散速度。除镍、钴元素外,大多数合金元素使奥氏体化过程减慢。由于合金元素造成碳在奥氏体中扩散的困难,再加上合金碳化物稳定性较高,较难溶入奥氏体,致使奥氏体被推延到较高的温度范围内进行。合金钢在奥氏体化过程中,不仅要进行碳的均匀化,而且还要进行合金元素的均匀化,因此合金钢的奥氏体的保温时间也比碳钢长。合金元素中除锰外,几乎都能阻止奥氏体晶粒长大;尤其是与碳亲和力强的元素作用更为显著。,因为强碳化物形成元素,在钢中能形成稳定的碳化物,且以弥散质点的形式分布在奥氏体的

47、晶界上,对奥氏体晶粒的长大起机械阻碍作用。这有利于在粗火时获得细马氏体,使钢具有较好的机械性能。,(二)合金元素对过冷奥氏体转变的影响,合金元素中除钴外,几乎都能使C曲线右移,降低钢的临界冷却速度,提高钢的淬透性。常用合金元素对奥氏体转变的影响,如图4-5所示。锰及非碳化物形成元素加入后仅使C曲线右移;与碳的亲和力比铁强的碳化物元素加入后,C曲线不仅右移;并改变了形状,分为上、下两个C曲线。其中上C曲线是珠光体转变区,下C曲线是贝氏体转变区,在两区之间过冷奥氏体具有较大的稳定性。,使C曲线右移最强烈的合金元素是铬、钼、锰。如果钢中同时具有两种以上的这些元素,C曲线右移则更明显,使钢具有极其良好

48、的淬透性。合金钢淬透性显著增加。合金钢淬火回火后的强度和硬度也就能显著地提高。由于合金钢的淬透性好,有些合金钢可在油甚至空气中进行淬火冷却,从而减少了内应力。这样,合金钢经过热处理后,强度与硬度比碳钢高;而脆性也比碳钢小得多,因此,可以具有更高一些的综合力学性能。,大多数合金元素使Ms与Mf温度点下降,如图46所示。Ms点愈低,淬火后钢中的参与奥氏体数量就愈多,因而会使钢淬火后的硬度和耐磨性下降,尺寸稳定性降低。,(三)合金元素对回火转变的影响,回火时钢的组织转变。主要是马氏体的分解及碳化物的析出与聚集长大的过程。合金元素加入钢中便推迟和阻碍这一过程的进行,如果需要完成上述的转变,则需要更高的

49、温度和更长的保温时间。合金钢回火后,所得到的碳化物更加细碎,分散度也更大,强度和硬度值也就更高。图4-7是含碳量为0.35%的碳钢,及含碳量相同而含钼不同的合金钢,在不同温度下回火后的硬度变化曲线。,第二节 合金钢的分类及编号方法,一、合金钢的分类,合金钢的种类繁多,通常按钢的成分和用途来进行分类。,(一)按化学成分分类,1按合金元素总含量的多少分为低合金钢(合金元素含量小于5%)、中合金钢(合金元素含量为5%10%)及高合金钢(合金元素大于10%)。2按加入的合金元素品种分为锰钢、铬钢、铬钼等。,(二)按用途分类,1合金结构钢合金结构钢又分为两类:一类为建筑及工程结构用钢,即普通低合金钢;另

50、一类为机器制造用钢,分为渗透钢、调质钢、弹簧钢和滚动轴承钢等。2合金工具钢合金工具钢又分为三类:刃具钢(包括低合金刃具钢及高速钢)、模具钢(包括热模具钢和冷模具钢)、量具钢。3特殊性能钢特殊性能钢又按所具有的特殊物理、化学和机械能分为磁钢、不锈钢、耐热钢、耐磨钢等。,二、合金钢的编号方法,我国合金钢的牌号,由冶金部统一规定,是按照合金钢的用途和化学成分,用数字和元素的化学符号相结合的方法来表示的。,(一)合金结构钢,编号是:两位数字+元素符号+数字。,前面的两位数字表示钢中平均含碳量的万分数;元素符号是指所含的合金元素;元素符号后的数字表示该元素在钢中的平均含量小于1%或1.5%时,钢号中只表

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 建筑/施工/环境 > 农业报告


备案号:宁ICP备20000045号-2

经营许可证:宁B2-20210002

宁公网安备 64010402000987号