分类资料的统计推断.ppt

上传人:小飞机 文档编号:5929991 上传时间:2023-09-05 格式:PPT 页数:35 大小:358.50KB
返回 下载 相关 举报
分类资料的统计推断.ppt_第1页
第1页 / 共35页
分类资料的统计推断.ppt_第2页
第2页 / 共35页
分类资料的统计推断.ppt_第3页
第3页 / 共35页
分类资料的统计推断.ppt_第4页
第4页 / 共35页
分类资料的统计推断.ppt_第5页
第5页 / 共35页
点击查看更多>>
资源描述

《分类资料的统计推断.ppt》由会员分享,可在线阅读,更多相关《分类资料的统计推断.ppt(35页珍藏版)》请在三一办公上搜索。

1、第六章分类变量资料的统计推断,主要内容,二项分布的概念定义,概率,均数与标准差,图形样本率的均数和标准差二项分布的应用,二项分布,一、二项分布定义,任意一次试验中,只有事件A发生和不发生两种结果,发生的概率分别是:和1 若在相同的条件下,进行n次独立重复试验,用X表示这n次试验中事件A发生的次数,那么X服从二项分布,记做 XB(n,),也叫Bernolli分布。,二、二项分布的概率,假设小白鼠接受一定剂量的毒物时,其死亡概率是80%。对每只小白鼠来说,其死亡事件A发生的概率是0.8,生存事件A的发生概率是0.2。试验用3只小白鼠,请列举可能出现的试验结果及发生的概率。,例题,那么事件A(死亡)

2、发生的次数X(1,2,3.n)的概率P:各种符号的意义XB(n,):随机变量X服从以n,为参数的二项分布。,三、二项分布的均数与标准差,通过总体中的取样过程理解均数与标准差XB(n,):X的均数X=n X的方差X2=n(1-)X的标准差:,二项分布,=0.3时,不同n值对应的二项分布,图形特点:两个轴意义,对称、偏态、与正态分布的关系决定图形的两个参数:n,,二项分布,五、样本率的均数和标准差,样本率的总体均数p:样本率的总体标准差p:样本率的标准差(标准误)Sp:,二项分布的应用,总体率区间估计样本率与总体率的比较两样本率的比较,统计推断,六、总体率区间估计,查表法正态分布法 公式:pSp,

3、二项分布的应用,七、样本率与总体率的比较,例题:新生儿染色体异常率为0.01,随机抽取某地400名新生儿,发现1名染色体异常,请问当地新生儿染色体异常是否低于一般?分析题意,选择合适的计算统计量的方法。,二项分布的应用,假设检验过程,1.建立假设:H0:1=0.01 H1:1 0.012.确定显著性水平,取0.05。3.计算统计量:P(0)P(1)直接得到概率P4.求概率值P5.做出推论,二项分布的应用,八、两样本率的比较,为研究某地男女学生的肺吸虫感染率是否存在差别,研究者随机抽取该地80名男生和85名女生,查得感染人数男生23人,女生13人,请问男女之间的感染是否有差别?统计量u的计算公式

4、:,二项分布的应用,假设检验的过程,1.建立假设:H0:1=2 H1:1 2 2.确定显著性水平,取0.05。3.计算统计量u4.求概率值P5.做出推论,二项分布的应用,Poisson分布,泊松分布,Poisson分布的意义,盒子中装有999个黑棋子,一个白棋子,在一次抽样中,抽中白棋子的概率1/1000在100次抽样中,抽中1,2,10个白棋子的概率分别是,放射性物质单位时间内的放射次数单位体积内粉尘的计数血细胞或微生物在显微镜下的计数单位面积内细菌计数人群中患病率很低的非传染性疾病的患病数,特点:罕见事件发生数的分布规律,主要内容,Poisson的概念Poisson分布的条件Poisson

5、分布的特点Poisson分布的应用,Poisson的概念,常用于描述单位时间、单位平面或单位空间中罕见“质点”总数的随机分布规律。罕见事件的发生数为X,则X服从Piosson分布。记为:XP()。X的发生概率P(X):Piosson分布的总体均数为Piosson分布的均数和方差相等。2,Poisson分布的条件,由于Poisson分布是二项分布的特例,所以,二项分布的三个条件也就是Poisson分布的适用条件。另外,单位时间、面积或容积、人群中观察事件的分布应该均匀,才符合Poisson分布。,Poisson分布的特点,Poisson分布的图形Poisson分布的可加性Poisson分布与正态

6、分布及二项分布的关系。,取不同值时的Poisson分布图,Poisson分布的可加性,观察某一现象的发生数时,如果它呈Poisson分布,那么把若干个小单位合并为一个大单位后,其总计数亦呈Poisson分布。如果X1P(1),X2P(2),XKP(K),那么X=X1+X2+XK,1 2 k,则XP()。,Poisson分布与正态分布及二项分布的关系,当较小时,Poisson分布呈偏态分布,随着增大,迅速接近正态分布,当20时,可以认为近似正态分布。Poisson分布是二项分布的特例,某现象的发生率很小,而样本例数n很大时,则二项分布接近于Poisson分布。n(应用:Poisson替代二项分布

7、),例题:,一般人群食管癌的发生率为8/10000。某研究者在当地随机抽取500人,结果6人患食管癌。请问当地食管癌是否高于一般?分析题意,选择合适的统计量计算方法。二项分布计算方法:Poisson分布的计算方法:均数是?,Poisson分布的应用,用是否符合Poisson分布来判断某些病是否具有传染性、聚集性等。总体均数的区间估计样本均数与总体均数的比较两样本均数的比较,总体均数的区间估计,查表法:将一个面积为100cm2的培养皿置于某病房,1小时后取出,培养24小时,查得8个菌落,求该病房平均1小时100cm2细菌数的95的可信区间。正态近似法:当样本计数大于X(亦即)较大时,Poisso

8、n分布近似正态分布,可用公式:,样本均数与总体均数的比较,直接概率法:例7.15正态近似法:统计量 例题:某溶液原来平均每毫升有细菌80个,现想了解某低剂量辐射能的杀菌效果。研究者以此剂量照射该溶液后取1毫升,培养得细菌40个。请问该剂量的辐射能是否有效?,假设检验过程,1.建立假设:H0:=80 H1:802.确定显著性水平,取0.05。3.计算统计量:4.求概率值P:单侧5.做出推论,两样本均数的比较,两个样本观察单位相同时:计算统计量两个样本观察单位不同时:,例题:,为研究两个水源被污染的情况是否相同,在每个水源各取10ml水坐细菌培养,结果甲水源样品中测得菌落890个,乙水源样品测得菌

9、落785个。请问两个水源的污染情况是否不同?,例题:,某车间在生产工艺改革前测三次粉尘浓度,每次测1升空气,分别测得38,29和36颗粉尘;改革后测取2次,分别有25,18颗粉尘。请问改革前后粉尘浓度是否相同?,二项分布 Poisson分布:总体率 n:总体中一定计量基本符号 n:样本例数 单位内发生某 X:某类事件发生数 事件的总均数 p=X/n:样本率 X或X:样本均数恰有X 例阳性的概率 最多有k例累积概率 至少有k例正态近似条件 n 与n(1)均大于5 n20 均数 u=n u=n(率)u=n=2标准差 可信区间估计n 50 查表 查表正态近似 pSp 样本率(均数)与总体 算出p(xk)或P(Xk)与比较 率(均数)比较(单侧)正态近似(单、双侧)两样本率(均数)比较(正态近似),小 结,

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 生活休闲 > 在线阅读


备案号:宁ICP备20000045号-2

经营许可证:宁B2-20210002

宁公网安备 64010402000987号