结构动力学单自由度.ppt

上传人:小飞机 文档编号:6193644 上传时间:2023-10-04 格式:PPT 页数:150 大小:1.30MB
返回 下载 相关 举报
结构动力学单自由度.ppt_第1页
第1页 / 共150页
结构动力学单自由度.ppt_第2页
第2页 / 共150页
结构动力学单自由度.ppt_第3页
第3页 / 共150页
结构动力学单自由度.ppt_第4页
第4页 / 共150页
结构动力学单自由度.ppt_第5页
第5页 / 共150页
点击查看更多>>
资源描述

《结构动力学单自由度.ppt》由会员分享,可在线阅读,更多相关《结构动力学单自由度.ppt(150页珍藏版)》请在三一办公上搜索。

1、结构动力学,第一篇 单自由度体系第二篇 多自由度体系第三篇 具有分布参数的体系第四篇 随机振动第五篇 结构地震反应分析,结构动力学概述,结构动力学是结构力学的一个分支,着重研究结构对于动荷载的响应(如位移、应力等的时间历程),以便确定结构的承载能力和动力学特性,或为改善结构的性能提供依据。,动荷载的特性结构的动力特性结构响应分析,大小方向作用点,大小方向作用点时间变化,数值,时间函数,动荷载和静荷载,动荷载的定义和分类,荷载:荷载三要素:荷载分类:,作用在结构上的主动力,大小、方向和作用点,作用时间:作用位置:对结构产生的动力效应:,恒载 活载,固定荷载 移动荷载,静荷载 动荷载,大小、方向和

2、作用点不随时间变化或变化很缓慢的荷载。,静荷载:动荷载:,大小、方向或作用点随时间变化很快的荷载。,是否会使结构产生显著的加速度,快慢标准:,质量运动加速度所引起的惯性力与荷载相比是否可以忽略,显著标准:,动荷载的定义,荷载在大小、方向或作用点方面随时间变化,使得质量运动加速度所引起的惯性力与荷载相比大到不可忽略时,则把这种荷载称为动荷载。,问题:你知道有哪些动荷载?,动荷载的分类:,概念:动荷载是时间的函数!,分类:,动荷载,突加荷载,冲击荷载,确定性荷载:,例如:简谐荷载,荷载的变化是时间的确定性函数。,非确定性荷载:,例如:,风荷载,地震作用,平均风,脉动风,荷载随时间的变化是不确定的或

3、不确知的,又称为随机荷载。,结构在确定性荷载作用下的响应分析通常称为结构振动分析。,结构在随机荷载作用下的响应分析,被称为结构的随机振动分析。,本课程主要学习确定性荷载作用下的结构振动分析。,结构动力学的研究内容,理论研究:,控制,实验研究:,高速铁路桥梁动力试验,材料性能的测定;结构动力相似模型的研究;结构固有(自由)振动参量的测定;结构动力响应的测定振动环境试验等。,与结构静力学相比,动力学的复杂性主要表现在:,结构动力学的基本特性,动力问题具有随时间而变化的性质;数学解答不是单一的数值,而是时间的函数;惯性力是结构内部弹性力所平衡的全部荷载的一个重要部分!引入惯性力后涉及到二阶微分方程的

4、求解;需考虑结构本身的动力特性:刚度分布、质量分布、阻尼特性分布的影响;,结构动力分析中体系的自由度,静力自由度:,在静力学中,一个物体的自由度,通常定义为确定此物体在空间中的位置以及全部变形状态所需要的独立参数的数目。,在振动过程的任一时刻,为了表示全部有意义的惯性力的作用,所必须考虑的独立位移分量的个数,称为体系的动力自由度。,定义,在振动过程的任一时刻,为了表示全部有意义的惯性力的作用,所必须考虑的独立位移分量的个数,称为体系的动力自由度。,定义,动力自由度:,动荷载结构产生弹性变形荷载变化结构变形变化,变形变化结构上质点振动质点振动惯性力,独立参数确定质量的位置独立参数的数量:振动自由

5、度,DOF=1,DOF=3,【例】考察图示结构的自由度:,动力自由度数目 结构动力体系分类,单自由度体系多自由度体系无限自由度体系,【例】考察图示结构的自由度:,DOF=2,DOF=3,通常假定受弯直杆无轴向变形,否则自由度数还会增加;如果考虑转动,自由度数还会增加。,DOF=3,DOF=?,DOF=?,自由度数是否取决于质点数?,DOF=,自由度数与结构是静定还是超静定有无关系?,实际工程结构的质量一般都是连续分布的,都是无限自由度体系,通常将其简化为多自由度或单自由度体系分析。,不完全!,No!,体系自由度的简化,1.集中质量法,把结构的分布质量按一定的规则集中到结构的某个或某些位置上,成

6、为一系列离散的质点或质量块。,适用于大部分质量集中在若干离散点上的结构。例如:房屋结构一般简化为层间剪切模型。,例如:,适用于质量分布比较均匀,形状规则且边界条件易于处理的结构。例如:右图简支梁的变形可以用三角函数的线性组合来表示。,2.广义坐标法,假定具有分布质量的结构在振动时的位移曲线可用一系列规定的位移曲线的和来表示:,则组合系数Ak(t)称为体系的广义坐标。,假定具有分布质量的结构在振动时的位移曲线为 y(x,t),可用一系列位移函数 的线性组合来表示:,定义,广义坐标表示相应位移函数的幅值,是随时间变化的函数。广义坐标确定后,可由给定的位移函数确定结构振动的位移曲线。以广义坐标作为自

7、由度,将无限自由度体系转化为有限个自由度。所采用的广义坐标数代表了所考虑的自由度数。,3.有限单元法,先把结构划分成适当(任意)数量的单元;对每个单元施行广义坐标法,通常取单元的节点位移作为广义坐标;对每个广义坐标取相应的位移函数(插值函数);由此提供了一种有效的、标准 化的、用一系列离散坐标表示无限自由度的结构体系。,要点:,将有限元法的思想用于解决结构的动力计算问题。,对分布质量的实际结构,体系的自由度数为单元节点可发生的独立位移未知量的总个数。综合了集中质量法和广义坐标法的某些特点,是最灵活有效的离散化方法,它提供了既方便又可靠的理想化模型,并特别适合于用电子计算机进行分析,是目前最为流

8、行的方法。已有不少专用的或通用的程序(如SAP,ANSYS等)供结构分析之用。包括静力、动力 和稳定分析。,结构的动力特性,承受动力荷载的结构体系的主要物理特性:,质量m=结构的惯性;弹簧k=结构的刚度;阻尼器c=结构的能量耗散.,质量、弹性特性、阻尼特性、外荷载,在最简单的单自由度体系模型中,所有特性都假定集结于一个简单的基本动力体系模型内,每一个特性分别由一个具有相应物理特性的元件表示:,数学模型,表征结构动力响应特性的一些固有量称为结构的动力特性,又称自振特性。,定义,结构的动力响应,结构的动力特性与结构的质量、刚度、阻尼及其分布有关。,定义,结构受外部干扰后发生振动,而在干扰消失后继续

9、振动,这种振动称为结构的自由振动。如果结构在振动过程中不断地受到外部干扰力作用,这种振动称为结构的强迫振动,又称受迫振动。,结构的自由振动与受迫振动,固有频率,质点在运动过程中完成一个完整的循环所需要的时间称为周期,单位时间内完成的循环次数称为频率。结构在自由振动时的频率称为结构的自振频率或固有频率。对大部分工程结构,结构的自振频率的个数与结构的动力自由度数相等。结构的自振频率与结构的质量和刚度有关。,阻尼,结构在振动过程中的能量耗散作用称为阻尼。结构的自由振动会因为阻尼作用而随时间衰减并最终停止。由于阻尼而使振动衰减的结构系统称为有阻尼系统。阻尼原因复杂:内摩擦、连接摩擦、周围介质阻力等。,

10、结构体系运动方程的建立,在结构动力分析中,描述体系质量运动规律的数学方程,称为体系的运动微分方程,简称运动方程。,定义,运动方程的解揭示了体系在各自由度方向的位移随时间变化的规律。建立运动方程是求解结构振动问题的重要基础。常用方法:直接平衡法、虚功法、变分法。,单自由度体系模型,质量块m,用来表示结构的质量和惯性特性自由度只有一个:水平位移y(t)无重弹簧,刚度为 k,提供结构的弹性恢复力无重阻尼器,阻尼系数c,表示结构的能量耗散,提供结构的阻尼力随时间变化的荷载F(t),单自由度体系运动方程的建立,单自由度体系运动方程的建立,建立计算模型,平衡方程:,根据dAlembert原理,等于质量与加

11、速度的乘积:,等于弹簧刚度与位移的乘积:,阻尼力等于阻尼系数与速度的乘积:,由此得到体系的运动方程:,惯性力:,弹性力:,阻尼力:,建立体系运动方程的方法,直接平衡法,又称动静法,将动力学问题转化为任一时刻的静力学问题:根据达朗贝尔原理,把惯性力作为附加的虚拟力,并考虑阻尼力、弹性力和作用在结构上的外荷载,使体系处于动力平衡条件,按照静力学中建立平衡方程的思路,直接写出运动方程。虚功法:根据虚功原理,即作用在体系上的全部力在虚位移上所做的虚功总和为零的条件,导出以广义坐标表示的运动方程。变分法:通过对表示能量关系的泛函的变分建立方程。根据理论力学中的哈密顿原理或其等价形式的拉格朗日方程导出以广

12、义坐标表示的运动方程。,直接平衡法,又称动静法,将动力学问题转化为任一时刻的静力学问题:根据达朗贝尔原理,把惯性力作为附加的虚拟力,并考虑阻尼力、弹性力和作用在结构上的外荷载,使体系处于动力平衡条件,按照静力学中建立平衡方程的思路,直接写出运动方程。,直接平衡法,根据所用平衡方程的不同,直接平衡法又分为刚度法和柔度法。,刚度法:取每一运动质量为隔离体,通过分析所受的全部外力,建立质量各自由度的瞬时力平衡方程,得到体系的运动方程。,平衡方程:,柔度法,以结构整体为研究对象,通过分析所受的全部外力,利用结构静力分析中计算位移的方法,根据位移协调条件建立体系的运动方程。,取每一运动质量为隔离体,通过

13、分析所受的全部外力,建立质量各自由度的瞬时力平衡方程,得到体系的运动方程。,刚度法,试用刚度法建立图示刚架的运动方程,解,1)确定自由度数:横梁刚性,柱子无轴向变形。,2)确定自由度的位移参数。,3)质量受力分析:取刚梁为隔离体,确定所受的所有外力!,4)列动平衡方程:,1个自由度。,其中各力的大小:,位移法:柱子一端产生单位平移时的杆端剪力,等效粘滞阻尼力:,柱端发生平移 y 时产生的梁-柱间剪力:,由此得到体系的运动方程:,惯性力:,弹性力:Fs=Fs1+Fs2:,由此得到体系的运动方程:,比较:,(0),试用柔度法建立图示简支梁的运动方程,解,1)确定自由度数:集中质量,仅竖向位移:,2

14、)确定自由度的位移参数:质量 m 的位移:,3)体系受力分析:取梁整体为隔离体,确定所受的所有外力!,1个自由度。,4)列位移方程:,改写成:,d为自由度方向加单位力所引起的位移,即柔度:,惯性力:,阻尼力:,由此得到体系的运动方程:,位移方程:,比较:,含义:等效动荷载直接作用在质量自由度上产生的动位移与 实际动荷载产生的位移相等!,令:,FE(t)定义为体系的等效动荷载或等效干扰力。其通用表达式,结论:任何一个单自由度体系的运动方程都可以抽象成为一 质量、弹簧、阻尼器体系的运动方程,一般形式为:,比较:,刚架:,基本质量弹簧体系:,简支梁:,练习题 试建立图示简支梁的运动方程,解,1)确定

15、自由度数:1个自由度。,2)位移参数:质量 m 的位移y(t)。,3)用柔度法:梁整体分析。,任一时刻m 的惯性力,则m 的位移方程为:,整理得:,位移方程:,作单位弯矩图,如右图:,代入位移方程,整理得:,或:,用图乘法求d11、d12:,单自由度体系的振动分析,单自由度体系的自由振动分析,最简单的由刚体、弹簧和阻尼器组成的单自由度体系.已经得到单自由度体系的运动方程:,(3-1),这个运动方程也适用于可转换为单自由度体系的任何复杂结构体系的广义坐标反应。,运动方程:,等效动荷载为零的情况下的振动称为自由振动。,定义,自由振动产生的原因:初始时刻的干扰!初始位移;初始速度;初始位移+初始速度

16、,结构受外部干扰后发生振动,而在干扰消失后继续振动,这种振动称为结构的自由振动。,如果去掉外荷载,FP(t)=0!,上式称为(二阶线性常系数)齐次方程;,(3-2),齐次方程的求解:,可设齐次方程解的形式为:,(3-3),其特征方程为:,或:,代入(3-2)可得:,(3-4),(3-2)称为(二阶线性常系数)齐次方程;,式中w2=k/m,w是体系振动的圆频率。根据阻尼系数c 值的不同,解出的特征参数s 值将具有不同的特性。,无阻尼自由振动,If c=0:,特征方程:,(3-2),自由振动方程:,(3-9),引入Euler方程:,代入(3-2)得:,(3-10),A和B是由初始条件决定的常数。,

17、得无阻尼自由振动的位移反应:,(3-12),设t=0时:,代入:,代入:,单自由度无阻尼体系运动方程的解:,(3-13),或写成:,(3-14),位移反应:,(3-12),(3-13),三角关系:,对比(3-13):b w t;a q,显然有:,(3-13)成为:,(3-13),(3-14),物理意义:,定义,对于无阻尼体系,运动完全是反复进行的。运动的最大位移称为振幅。,运动完成一个完整循环所需时间称为自振周期,由于对应每个角增量 2p 便发生一个完整循环,自振周期就是:,单位时间内的循环次数称为自振频率:,运动的角速度称为自振圆频率:,牢记,简支梁的自振频率,已知:,由第2章我们已经推导出

18、用柔度表示的简支梁的运动方程:,(2-5),令体系的等效动荷载FE(t)=0,则简支梁的自由振动方程为:,根据定义:等效动荷载为零的情况下产生的振动称为自由振动。,,则可导出:,简支梁自振频率的这些表达式说明:,d为在质量自由度方向加单位力所引起的位移!,Dst表示由于重力mg引起的静力位移!,对单自由度体系,自振频率可以用刚度k、柔度d 或静挠度Dst按上式计算;简支梁的自振频率w是结构刚度k 和质量m 决定的固有特性;结构的自振频率w 随刚度k 增大而增大;随质量m 增大而减小;结构的自振频率w 随静挠度Dst增大而减小。,比较图示三种单自由度梁的圆频率。,梁的自振频率为:,解,按各梁的单

19、位弯矩图,求梁的d:,三种情况的频率:,三种情况的频率比:,阻尼自由振动,对于有阻尼的单自由度体系,特征方程:,(3-2),自由振动方程:,则:,随着根号中值的符号的不同,这个表达式可以描述临界阻尼、低阻尼和超阻尼三种体系的运动型式。本课程只讲临界阻尼和低阻尼两种情况。,1.临界阻尼,当根式中的值为零时,对应的阻尼值称为临界阻尼,记作cc。显然,应有cc/2m=w,即:,特征方程:,这时,对应的s 值为:,(3-2),自由振动方程:,临界阻尼自由振动方程的解为:,(3-15),(3-16),由初始条件:,得到临界阻尼体系反应的最终形式:,临界阻尼位移解:,临界阻尼体系反应不是简谐振动,体系的位

20、移反应从开始时的,依照指数规律衰减,回复到零点。,临界阻尼的物理意义是:在自由振动反应中不出现震荡所需要的最小阻尼值。,速度,(3-16),2.低阻尼,特征方程:,(3-2),自由振动方程:,如果体系的阻尼比临界阻尼小,则显然有c/2mw,这时,特征方程根式中的值必然为负值,则s 值成为:,引入符号:,其中x 表示体系阻尼与临界阻尼的比值,称为阻尼比,则:,成为:,引入Euler方程:,引入符号:,其中wd 称为有阻尼振动频率。,则,利用初始条件:,得到低阻尼体系动力反应的最终形式:,(3-18),写成矢量表达式:,运动的振幅(矢量的模)和初相位分别为:,(3-20),低阻尼体系动力反应:,物

21、理意义:,低阻尼体系的自由振动具有不变的圆频率wd,并围绕中心位置振荡,而其振幅则随时间呈指数e-xwt 衰减。如果反应的时间足够长,最终会衰减到零。,确定体系阻尼比的一种方法,体系的阻尼比可以通过测试体系运动的衰减规律得到:,阻尼体系动力反应:,体系从任一时刻经几个周期后的振幅比为:,取对数后:,(3-21),阻尼比:,体系阻尼的测试:,2)计算阻尼比:,确定结构体系阻尼的其它方法。,1)实测体系经过个周期后的位移幅值比:,3)计算阻尼系数:,计算图示刚架的阻尼系数,已知:,柱子无重,h=3m,刚性横梁m=5000kg 初位移25mm,经5个周期后测得位移7.12mm,解,确定:ytk=yt

22、0=25mm,yt5=7.12mm,计算阻尼比:,计算阻尼系数:,钢筋混凝土和砌体结构:x=0.020.05;钢结构:x=0.0020.02;拱坝:x=0.030.05;重力坝:x=0.050.1;土坝、堆石坝:x=0.10.2,常用结构的阻尼比,表3-0 阻尼比的建议值EUROCODE 1(EN1991-2),单自由度体系受迫振动,单自由度受迫振动体系的运动方程:,二阶常系数非齐次微分方程。全解由通解和特解组成:,通解y1(t)由体系的自由振动反应确定:,受迫振动:结构在动力荷载即外干扰力作用下产生的振动。,注意:对于受迫振动体系,通解中的常数的A、B 应由微分方程的全解(通解+特解)而不能

23、仅由通解确定!,荷载FP(t)不同,微分方程的特解y2(t)的形式是不同的。,简谐荷载作用下的动力响应分析,简谐荷载:FP(t)=F0sinqt。,简谐荷载作用下结构体系的运动方程:,F0为荷载的幅值,q为荷载的圆频率。,(一)简谐荷载下无阻尼体系的反应,简谐荷载作用下的无阻尼体系运动方程:,通解 齐次方程的解:,特解 由动力荷载引起的特殊解。设:,代入(1)式得:,所以特解的振幅:,b:频率比,表示荷载频率与体系自振频率的比:,特解:,全解:,常数A、B 由初始条件确定。假设:,解得:,简谐荷载作用下无阻尼体系的动力反应为:,F0/k=,Dst:将荷载F0 静止地放在体系上所产生的位移;,:

24、动力放大系数,表示简谐荷载的动力放大效应;,Sinqt:按荷载作用频率振动的反应分量:稳态反应;,bSinwt:按体系自振频率振动的反应分量:瞬态反应。,体系的动力反应由两部分组成:,物理意义,Sinqt:按荷载作用频率振动的反应分量:稳态反应;,bSinwt:按体系自振频率振动的反应分量:瞬态反应。,动力放大系数:,思考:b=1时,体系的动力反应如何?,(二)简谐荷载下阻尼体系的反应,阻尼体系运动方程:,通解 齐次方程的解:,特解 由动力荷载引起的特殊解。设:,由c=2mxw,w2=k/m,上式可写作:,对y2(t)求导:,运动方程:,代入运动方程:,变量t为任意值时,等式均恒成立的条件?,

25、即:,由此可解出系数:,代入方程的特解:,方程的全解:,(3-31),第一项按自振频率wd 振动,是由初始条件确定的自由振动反应。由于实际结构中阻尼的存在,这一项很快会被衰减为零,即瞬态反应;第二项按荷载频率振动,即稳态反应;有些场合,如冲击荷载、地震等,应分析瞬态反应;一般情况下,瞬态反应对结构强迫振动分析的意义不大,这里主要讨论稳态反应的特性。,谐振荷载作用下单自由度体系的稳态反应解为:,(3-32),反应振幅:,相位差:,这个强迫振动的解是由正弦和余弦两个三角函数组合而成的,它同样描述了一个简谐运动,也就是位移随时间呈正弦变化。这个运动也可以用矢量表示:,物理意义,稳态反应:与外荷载同频

26、率q 但存在一定相位差y;这里的相位差表示反应的相位比荷载相位所落后的角度。,F0/k=Dst:荷载F0 产生的静位移;,反应的振幅与所引起的静位移的比值称为动力放大系数:,(3-32),动力反应:,动力放大系数是频率和阻尼的函数。,x=0时:,反应与外荷载同步!(b1),动力放大系数:,相频特性:,x越小,体系反应越大;,q 远小于w 时,b 1:,q 远大于w 时,b 1:,m1:加载很慢,惯性力和阻尼力很小,接近静力反应,y 0。,m 0:质量振幅很小,惯性力很大,y 接近于180度。,q 接近于w 时,b 1:,m 增加很快:y 接近于90度。反应的峰值出现在频率比接近1的地方。当作用

27、荷载的频率等于体系自振频率时的状态,称体系发生共振。,发生共振时:,m 的极值:,动力系数与阻尼成反比!,时:,共振可能导致结构破坏!,在工程设计时,应通过调整结构的刚度和质量控制频率,避免接近荷载频率,防止共振发生!,在共振区,外荷载主要由阻尼平衡!,共振时,外荷载主要由阻尼平衡!,例1 求图示结构的最大动位移和最大动弯矩,已知:q=0.6w;不计阻尼。,解,1)计算最大动位移:,计算动力系数:,确定动力振幅作用下的静位移;,求出单位力作用下的挠度:,最大动位移:,体系为单自由度:质量的竖向位移y(t)。,2)计算最大动弯矩:,作用在质量上的合力:,体系位移:,最大动弯矩:,例2,惯性力:,

28、加速度计和位移计,故,当x=0.7,0b0.6,m接近常量,即r与基础加速度成正比。,故,当x=0.5,b1,b2m接近常量,即r与基础振幅成正比。,隔 振,基础作用力:,基础最大作用力:,定义:传导比,b与TR的关系,有减振效果!,地基振动:,m相对地基振动,合成振动:,进行隔振设计时,用1-TR表示隔振效率。,仅当b1.414时,有隔振作用,只是阻尼比越大,隔振效果越不好,故采用隔振体系应小阻尼比。当阻尼比为零:,周期荷载作用下的动力响应分析,对于任意周期性荷载,可展开成傅里叶级数。,静荷载,余弦函数,正弦函数,周期荷载,简谐荷载是任意周期荷载的一个特例,是级数中的一项。,不考虑阻尼时:对

29、第n项正弦和余弦荷载,体系的运动方程为:,周期荷载的傅里叶级数:,其中:,体系的总位移可利用叠加原理求得:,对应的解为:,(3-36),已知有阻尼体系:,解为:,可设特解为:,解为:,有阻尼体系:,考虑阻尼时:对用傅里叶级数表示的周期荷载,体系的运动方程为:,对正弦项:,对余弦项:,体系的稳态解可用利用叠加原理求得:,其中:,正弦项解:,余弦项解:,傅里叶级数解的指数形式,Euler方程,单位复数干扰力,稳态解,复频反应函数,总反应,单自由度体系对冲击荷载的反应,正弦波脉冲矩形脉冲三角形脉冲,持续时间短不需考虑阻尼,正弦波冲击,阶段I:结构承受谐振荷载,从静止开始运动,包含瞬态反应和稳态反应。

30、,突加荷载,考虑阻尼,正弦波冲击,阶段II:自由振动,与阶段I最终时刻的位移和速度有关。,最大响应:,仅在b1情况,上式才有意义!,正弦波冲击,最大响应:当b1,幅值:,突加荷载作用下的动力响应分析,突加荷载:,特解:,全解:,初始条件,突加荷载作用下零初始条件的解:,如不考虑阻尼影响,则:,无阻尼,有阻尼,最大动位移:,位移动力放大系数:,工程中实际阻尼很小,一般认为突加荷载的位移动力放大系数为2。,矩形脉冲荷载作用下的动力响应分析,矩形脉冲荷载:,短时间滞留在结构上的荷载;,由于作用时间短,一般不考虑阻尼;,0tt1时:,tt1时:,突加荷载,自由振动,矩形脉冲荷载作用下结构位移响应:,当

31、t1T/2时,最大动位移 ymax=2yst 总是出现在第一阶段;,当t1T/2时,wt 一定可以达到p!,当t1T/2时,最大动位移将在第二阶段自由振动期间出现:,当t1T/2时,wt 就达不到p!,当wt p时,,极值出现在t t1时!,位移放大系数:,对于给定的冲击荷载,位移放大系数依赖于脉冲的持续时间与结构固有周期的比值t1/T。,表3-1 矩形脉冲荷载的动力放大系数,表3-2 三角形脉冲荷载的动力放大系数,三角形脉冲荷载作用下结构的动力响应,三角形脉冲荷载:,震动谱或反应谱,无阻尼单自由度体系中,给定的冲击荷载形式所引起的最大反应仅仅依赖与脉冲的持续时间与结构的固有周围的比值t1/T

32、!,反应谱可用来求结构对作用在基地的加速度脉冲的反应。,冲击荷载反应的近似分析,结论1:对于长持续时间的荷载,动力放大系数主要依赖于荷载达到最大值的增加速度。具有足够持续时间的单阶荷载,动力放大系数为2,缓慢逐渐增加的荷载,动力放大系数为1。,结论2:对于短持续时间的荷载,最大位移幅值主要依赖于作用冲量的大小,而脉冲荷载的形式对它影响不大。但是,动力放大系数十分依赖于荷载的形式,与脉冲面积与荷载峰值的比成比例。,由动量和冲量的关系:,由于,为t2级,为t 级,加荷之后的自由振动,由动量和冲量的关系:,由于,为t2级无穷小,为t 级无穷小,加荷之后的自由振动,对一般动力荷载的反应,其中,当 时,

33、取微分:,整个荷载时程可以视作由一系列连续的短脉冲所组成,每一个脉冲况产生 的微分反应,总反映可将在荷载时程所产生的全部微分反应相加而获得:,Duhamel 积分,卷积形式:,单位脉冲反应,考虑运动系统初始条件:,单位脉冲反应(针对无阻尼体系!)表示在一个单位大小的脉冲作用下,结构的反应。,诱导公式:,令,以 为例:,无阻尼情况:,Duhamel积分:,有阻尼情况:,卷积形式:,单位脉冲反应,有阻尼情况:,令,以 为例:,Duhamel 积分的物理意义,整个荷载时程可以看作是由一系列连续的短脉冲所组成,所有的脉冲反应均按同样的圆频率、同样的衰减规律振动,体系的动力反应可以将0tt 时段内所有荷

34、载时程FP(t)所激励的在时刻t 的全部微分反应相加获得,每个短脉冲都激起结构的振动,每个短脉冲的幅值是不同的,每个脉冲在t 时刻都有反应,傅里叶级数解的指数形式:,频域分析,令:,傅里叶级数解的指数形式:,这个式子的有点在于,积分限可以任意长,以致它可以把整个荷载周期包括在内。,当 时,!,傅里叶变换对,傅里叶变换对,复频反应函数的定义:,频率为 处,单位荷载分量的幅值为:,力的平衡方程:,非线性结构反应的分析,经过Dt时间后:,线性加速度法:假定在每个时间增量内加速度线性变化,而且体系的特性在这个间隔内保持为常量。,令,即:,代入:,令:,解方程可得,进而计算,Wilson-q法,Wils

35、on-q法:假定在每个时间段(t,t+qDt)内加速度线性变化,而且体系的特性在(t,t+Dt)内保持为常量。,力的平衡方程:,经过Dt时间后:,方程:,注意:方程解得的不是t+Dt时刻的位移,而是t+qDt时刻的位移!需由t+qDt时刻的位移计算t+Dt时刻加速度。,t+Dt时刻加速度,进而计算,注意:线性加速度法是有条件收敛的,而wilson-q法在q1.37时,无条件收敛!,Rayleigh法的基本概念为能量守恒定律。即认为如果没有阻尼力消耗能量的话,在自由振动体系中,能量应该保持常量。,用Rayleigh法进行振动分析,自由振动位移:,自由振动速度:,弹簧变形能:,质量块动能:,Ray

36、leigh法的基本概念为能量守恒定律。即认为如果没有阻尼力消耗能量的话,在自由振动体系中,能量应该保持常量。,最大动能等于最大位能:,注意:这个表达式和以前所述的一样,但现在它是从最大变形能应等于最大动能的Rayleigh法概念而得。,例子:简支梁,认为是无限自由度,一般体系的近似分析,体系变形能:,例子:简支梁,认为是无限自由度,动能:,由Rayleigh法:,例子:简支梁,认为是无限自由度,振动形状的选取,假定振型为抛物线:,能量守恒:,假定振型为正弦曲线:,能量守恒:,假定振型为抛物线:,假定振型为正弦曲线:,原则上,只要满足梁的几何边界条件,形状函数可任意选取,亦即形状函数仅需和具体的支承条件一致。但是,对不是真实振型的任意形状函数,为了保持平衡就必须有附加的外部约束作用,这些附加约束将会使体系变得刚硬,从而使计算频率增大。,Rayleigh法计算的频率中,最低的一个,总是最好的近似值!,如何确定合理的挠曲形状?,采用惯性荷载 作用时的挠曲线。,注意:,最大动能:,最大变形能:,能量守恒:,R00法,改进的Rayleigh法,假设分布惯性力,R01法,荷载作用下挠度,新的动能表达式,用v(1)代替v(0):,R11法,由于,

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 生活休闲 > 在线阅读


备案号:宁ICP备20000045号-2

经营许可证:宁B2-20210002

宁公网安备 64010402000987号